scispace - formally typeset
Search or ask a question

Showing papers by "Federica Sotgia published in 2018"


Journal ArticleDOI
TL;DR: The potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs is described, together with the possibility to ‘force’ C SCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities.
Abstract: Phenotypic and functional heterogeneity is one of the most relevant features of cancer cells within different tumor types and is responsible for treatment failure. Cancer stem cells (CSCs) are a population of cells with stem cell-like properties that are considered to be the root cause of tumor heterogeneity, because of their ability to generate the full repertoire of cancer cell types. Moreover, CSCs have been invoked as the main drivers of metastatic dissemination and therapeutic resistance. As such, targeting CSCs may be a useful strategy to improve the effectiveness of classical anticancer therapies. Recently, metabolism has been considered as a relevant player in CSC biology, and indeed, oncogenic alterations trigger the metabolite-driven dissemination of CSCs. More interestingly, the action of metabolic pathways in CSC maintenance might not be merely a consequence of genomic alterations. Indeed, certain metabotypic phenotypes may play a causative role in maintaining the stem traits, acting as an orchestrator of stemness. Here, we review the current studies on the metabolic features of CSCs, focusing on the biochemical energy pathways involved in CSC maintenance and propagation. We provide a detailed overview of the plastic metabolic behavior of CSCs in response to microenvironment changes, genetic aberrations, and pharmacological stressors. In addition, we describe the potential of comprehensive metabolic approaches to identify and selectively eradicate CSCs, together with the possibility to ‘force’ CSCs within certain metabolic dependences, in order to effectively target such metabolic biochemical inflexibilities. Finally, we focus on targeting mitochondria to halt CSC dissemination and effectively eradicate cancer.

173 citations


Journal ArticleDOI
TL;DR: Quantitative decreases in CD44 and ALDH1 expression are consistent with pre-clinical experiments and suggest that doxycycline can selectively eradicate CSCs in breast cancer patients in vivo.
Abstract: Background and objectives: Cancer stem cells (CSCs) have been implicated in tumor initiation, recurrence, metastatic spread and poor survival in multiple tumor types, breast cancers included. CSCs selectively overexpress key mitochondrial-related proteins and inhibition of mitochondrial function may represent a new potential approach for the eradication of CSCs. Because mitochondria evolved from bacteria, many classes of FDA-approved antibiotics, including doxycycline, actually target mitochondria. Our clinical pilot study aimed to determine whether short-term pre-operative treatment with oral doxycycline results in reduction of CSCs in early breast cancer patients. Methods: Doxycycline was administered orally for 14 days before surgery for a daily dose of 200 mg. Immuno-histochemical analysis of formalin-fixed paraffin-embedded (FFPE) samples from 15 patients, of which 9 were treated with doxycycline and 6 were controls (no treatment), was performed with known biomarkers of "stemness" (CD44, ALDH1), mitochondria (TOMM20), cell proliferation (Ki67, p27), apoptosis (cleaved caspase-3), and neo-angiogenesis (CD31). For each patient, the analysis was performed both on pre-operative specimens (core-biopsies) and surgical specimens. Changes from baseline to post-treatment were assessed with MedCalc 12 (unpaired t-test) and ANOVA. Results: Post-doxycycline tumor samples demonstrated a statistically significant decrease in the stemness marker CD44 (p-value < 0.005), when compared to pre-doxycycline tumor samples. More specifically, CD44 levels were reduced between 17.65 and 66.67%, in 8 out of 9 patients treated with doxycycline. In contrast, only one patient showed a rise in CD44, by 15%. Overall, this represents a positive response rate of nearly 90%. Similar results were also obtained with ALDH1, another marker of stemness. In contrast, markers of mitochondria, proliferation, apoptosis, and neo-angiogenesis, were all similar between the two groups. Conclusions: Quantitative decreases in CD44 and ALDH1 expression are consistent with pre-clinical experiments and suggest that doxycycline can selectively eradicate CSCs in breast cancer patients in vivo. Future studies (with larger numbers of patients) will be conducted to validate these promising pilot studies.

91 citations


Journal ArticleDOI
TL;DR: It is shown here that mDIVI1 is able to inhibit 3D tumorsphere forming capacity, cell migration and stemness-related signalling in breast cancer cells, indicating that mDivI1 can potentially be used for the therapeutic elimination of cancer stem cells (CSCs).
Abstract: Mitochondria are dynamic organelles frequently undergoing fission and fusion events to maintain their integrity, bioenergetics and spatial distribution, which is fundamental to the processes of cell survival. Disruption in mitochondrial dynamics plays a role in cancer. Therefore, proteins involved in regulating mitochondrial dynamics are potential targets for treatment. mDIVI1 is an inhibitor of the mitochondrial fission protein DRP1, which induces i) mitochondrial oxidative stress and ii) effectively reduces mitochondrial metabolism. We show here that mDIVI1 is able to inhibit 3D tumorsphere forming capacity, cell migration and stemness-related signalling in breast cancer cells, indicating that mDIVI1 can potentially be used for the therapeutic elimination of cancer stem cells (CSCs).

76 citations


Journal ArticleDOI
14 Nov 2018
TL;DR: It is seen that Azithromycin preferentially targets senescent cells, removing approximately 97% of them with great efficiency, which represents a near 25-fold reduction in senescence.
Abstract: Here, we employed a “senolytic” assay system as a screening tool, with the goal of identifying and repurposing FDA-approved antibiotics, for the targeting of the senescent cell population. Briefly, we used two established human fibroblast cell lines (MRC-5 and/or BJ) as model systems to induce senescence, via chronic treatment with a DNA-damaging agent, namely BrdU (at a concentration of 100 μM for 8 days). Cell viability was then monitored by using the SRB assay, to measure protein content. As a consequence of this streamlined screening strategy, we identified Azithromycin and Roxithromycin as two novel clinically-approved senolytic drugs. However, Erythromycin – the very closely-related parent compound – did not show any senolytic activity, highlighting the dramatic specificity of these interactions. Interestingly, we also show that Azithromycin treatment of human fibroblasts was indeed sufficient to strongly induce both aerobic glycolysis and autophagy. However, the effects of Azithromycin on mitochondrial oxygen consumption rates (OCR) were bi-phasic, showing inhibitory activity at 50 μM and stimulatory activity at 100 μM. These autophagic/metabolic changes induced by Azithromycin could mechanistically explain its senolytic activity. We also independently validated our findings using the xCELLigence real-time assay system, which measures electrical impedance. Using this approach, we see that Azithromycin preferentially targets senescent cells, removing approximately 97% of them with great efficiency. This represents a near 25-fold reduction in senescent cells. Finally, we also discuss our current results in the context of previous clinical findings that specifically document the anti-inflammatory activity of Azithromycin in patients with cystic fibrosis – a genetic lung disorder that results in protein mis-folding mutations that cause protein aggregation.

76 citations


Journal ArticleDOI
TL;DR: It is shown that high expression of the mRNA species encoding HMGR is associated with poor clinical outcome in breast cancer patients, providing a potential companion diagnostic for BMF-directed personalized therapy.

56 citations


Journal ArticleDOI
TL;DR: This general approach, using FDA-approved antibiotics to target mitochondria, was effective in killing CSCs originating from many different cancer types, including DCIS, breast (ER(+) and ER(-)), prostate, ovarian, lung and pancreatic cancers, as well as melanoma and glioblastoma, among others.
Abstract: Here, we wish to propose a new systematic approach to cancer therapy, based on the targeting of mitochondrial metabolism, especially in cancer stem cells (CSCs). In the future, we envision that anti-mitochondrial therapy would ultimately be practiced as an add-on to more conventional therapy, largely for the prevention of tumor recurrence and cancer metastasis. This mitochondrial based oncology platform would require a panel of FDA-approved therapeutics (e.g. Doxycycline) that can safely be used to inhibit mitochondrial OXPHOS and/or biogenesis in CSCs. In addition, new therapeutics that target mitochondria could also be developed, to optimize their ability to eradicate CSCs. Finally, in this context, mitochondrial-based biomarkers (i.e. “Mito-signatures”) could be utilized as companion diagnostics, to identify high-risk cancer patients at diagnosis, facilitating the early detection of tumor recurrence and the prevention of treatment failure. In summary, we suggest that new clinical trials are warranted to test and possibly implement this emerging treatment strategy, in a variety of human cancer types. This general approach, using FDA-approved antibiotics to target mitochondria, was effective in killing CSCs originating from many different cancer types, including DCIS, breast (ER(+) and ER(-)), prostate, ovarian, lung and pancreatic cancers, as well as melanoma and glioblastoma, among others. Thus, we propose the term MITO-ONC-RX, to describe this anti-mitochondrial platform for targeting CSCs. The use of re-purposed FDA-approved drugs will undoubtedly help to accelerate the clinical evaluation of this approach, as these drugs can move directly into Phase II clinical trials, saving considerable amounts of time (10–15 y) and billions in financial resources.

42 citations


Journal ArticleDOI
23 Aug 2018
TL;DR: It is shown that treatment with MGT is sufficient to suppress both oxidative mitochondrial metabolism (OXPHOS) and glycolytic flux, shifting cancer cells towards a more quiescent metabolic state, raising the intriguing possibility that MGT can be used as inhibitor of mTOR, instead of chemical compounds, such as rapamycin.
Abstract: Matcha green tea (MGT) is a natural product that is currently used as a dietary supplement and may have significant anti-cancer properties. However, the molecular mechanism(s) underpinning its potential health benefits remain largely unknown. Here, we used MCF7 cells (an ER(+) human breast cancer cell line) as a model system, to systematically dissect the effects of MGT at the cellular level, via i) metabolic phenotyping and ii) unbiased proteomics analysis. Our results indicate that MGT is indeed sufficient to inhibit the propagation of breast cancer stem cells (CSCs), with an IC-50 of ~0.2 mg/ml, in tissue culture. Interestingly, metabolic phenotyping revealed that treatment with MGT is sufficient to suppress both oxidative mitochondrial metabolism (OXPHOS) and glycolytic flux, shifting cancer cells towards a more quiescent metabolic state. Unbiased label-free proteomics analysis identified the specific mitochondrial proteins and glycolytic enzymes that were down-regulated by MGT treatment. Moreover, to discover the underlying signalling pathways involved in this metabolic shift, we subjected our proteomics data sets to bio-informatics interrogation via Ingenuity Pathway Analysis (IPA) software. Our results indicate that MGT strongly affected mTOR signalling, specifically down-regulating many components of the 40S ribosome. This raises the intriguing possibility that MGT can be used as inhibitor of mTOR, instead of chemical compounds, such as rapamycin. In addition, other key pathways were affected, including the anti-oxidant response, cell cycle regulation, as well as interleukin signalling. Our results are consistent with the idea that MGT may have significant therapeutic potential, by mediating the metabolic reprogramming of cancer cells.

42 citations


PatentDOI
TL;DR: The idea that mitochondrial biogenesis itself may be a primary driver of "stemness" in hypoxic cancer cells, with metabolic links to fatty acid oxidation (FAO), is discussed and Doxycycline is proposed to be re-purposed to target hypoxic CSCs.
Abstract: The present disclosure relates to inhibitors of mitochondrial function. Methods of treating hypoxic cancer cells using anti-angiogenic agents and mitochondrial biogenesis inhibitors are disclosed. Tetracyclines, such as doxycycline, may serve as mitochondrial biogenesis inhibitors. Also described are methods of sensitizing hypoxic cancer cells to one or more chemotherapies by administering a mitochondrial biogenesis inhibitor with the chemotherapy.

40 citations


Journal ArticleDOI
19 Feb 2018
TL;DR: It is shown that TPP-related compounds provide a novel chemical strategy for effectively killing both “bulk” cancer cells and ii) CSCs, while specifically minimizing or avoiding off-target side-effects in normal cells.
Abstract: Tri-phenyl-phosphonium (TPP) is a non-toxic chemical moiety that functionally behaves as a mitochondrial targeting signal (MTS) in living cells. Here, we explored the hypothesis that TPP-related compounds could be utilized to inhibit mitochondria in cancer stem cells (CSCs). We randomly selected 9 TPP-related compounds for screening, using an ATP depletion assay. Based on this approach, five compounds were identified as "positive hits"; two had no detectable effect on ATP production. Remarkably, this represents a >50% hit rate. We validated that the five positive hit compounds all inhibited oxygen consumption rates (OCR), using the Seahorse XFe96 metabolic flux analyzer. Interestingly, these TPP-related compounds were non-toxic and had little or no effect on ATP production in normal human fibroblasts, but selectively targeted adherent "bulk" cancer cells. Finally, these positive hit compounds also inhibited the propagation of CSCs in suspension, as measured functionally using the 3D mammosphere assay. Therefore, these TPP-related compounds successfully inhibited anchorage-independent growth, which is normally associated with a metastatic phenotype. Interestingly, the most effective molecule that we identified contained two TPP moieties (i.e., bis-TPP). More specifically, 2-butene-1,4-bis-TPP potently and selectively inhibited CSC propagation, with an IC-50 < 500 nM. Thus, we conclude that the use of bis-TPP, a "dimeric" mitochondrial targeting signal, may be a promising new approach for the chemical eradication of CSCs. Future studies on the efficacy of 2-butene-1,4-bis-TPP and its derivatives are warranted. In summary, we show that TPP-related compounds provide a novel chemical strategy for effectively killing both i) "bulk" cancer cells and ii) CSCs, while specifically minimizing or avoiding off-target side-effects in normal cells. These results provide the necessary evidence that "normal" mitochondria and "malignant" mitochondria are truly biochemically distinct, removing a significant barrier to therapeutically targeting cancer metabolism.

29 citations


Journal ArticleDOI
20 Dec 2018
TL;DR: A novel metabolic mechanism leading to endocrine resistance is uncovered, which may have important clinical implications for improving patient outcomes and is specifically associated with the over-expression of a number of protein markers of poor clinical outcome.
Abstract: Naturally-occurring somatic mutations in the estrogen receptor gene (ESR1) have been previously implicated in the clinical development of resistance to hormonal therapies, such as Tamoxifen. For example, the somatic mutation Y537S has been specifically associated with acquired endocrine resistance. Briefly, we recombinantly-transduced MCF7 cells with a lentiviral vector encoding ESR1 (Y537S). As a first step, we confirmed that MCF7-Y537S cells are indeed functionally resistant to Tamoxifen, as compared with vector alone controls. Importantly, further phenotypic characterization of Y537S cells revealed that they show increased resistance to Tamoxifen-induced apoptosis, allowing them to form mammospheres with higher efficiency, in the presence of Tamoxifen. Similarly, Y537S cells had elevated basal levels of ALDH activity, a marker of "stemness", which was also Tamoxifen-resistant. Metabolic flux analysis of Y537S cells revealed a hyper-metabolic phenotype, with significantly increased mitochondrial respiration and high ATP production, as well as enhanced aerobic glycolysis. Finally, to understand which molecular signaling pathways that may be hyper-activated in Y537S cells, we performed unbiased label-free proteomics analysis. Our results indicate that TIGAR over-expression and the Rho-GDI/PTEN signaling pathway appear to be selectively activated by the Y537S mutation. Remarkably, this profile is nearly identical in MCF7-TAMR cells; these cells were independently-generated in vitro, suggesting a highly conserved mechanism underlying Tamoxifen-resistance. Importantly, we show that the Y537S mutation is specifically associated with the over-expression of a number of protein markers of poor clinical outcome (COL6A3, ERBB2, STAT3, AFP, TFF1, CDK4 and CD44). In summary, we have uncovered a novel metabolic mechanism leading to endocrine resistance, which may have important clinical implications for improving patient outcomes.

19 citations


Patent
18 May 2018
TL;DR: A repurposcin may be used to treat and prevent tumor recurrence, metastasis, drug resistance, and/or radiotherapy resistance as mentioned in this paper, which may have enhanced anti-cancer properties, among other advantageous properties.
Abstract: A therapeutic compound having intrinsic anti-mitochondrial properties may be chemically modified to target the compound to mitochondria, and the resulting "repurposcins" may have enhanced anti-cancer properties, among other advantageous properties. For example, a repurposcin may be used to treat and/or prevent tumor recurrence, metastasis, drug resistance, and/or radiotherapy resistance. Described herein are repurposcin compounds and pharmaceutical compositions that have been developed according to the present approach. Also described are methods for identifying and developing repurposcins, methods of using repurposcins to target cancer stem cells, and compositions for treating cancer containing one or more repurposcins as the active ingredient.

Patent
25 Oct 2018
TL;DR: In this paper, compounds and methods of eradicating cancer stem cells by combining inhibitors of oxidative metabolism and glycolytic metabolism were described. But none of the methods were used to identify a combination of inhibitors of LDL and GCL.
Abstract: The present disclosure relates to compounds and methods of eradicating cancer stem cells by combining inhibitors of oxidative metabolism and glycolytic metabolism. Also described are compounds and methods of identifying a combination of inhibitors of oxidative metabolism and glycolytic metabolism to treat cancer stem cells.

Patent
11 Oct 2018
TL;DR: In this paper, a Proteomics-to-Genomics approach allows for in silico validation of biomarkers and drug targets, and methods for identifying candidates for anti-mitochondrial therapy, and in particular mitochondrial biogenesis inhibitor therapy.
Abstract: The present disclosure relates to a Proteomics-to-Genomics approach allows for in silico validation of biomarkers and drug targets. Biomarkers having high prognostic value in predicting cancer patient populations that may benefit from mitochondrial biogenesis inhibitor therapy may be identified under the present approach. Also disclosed are methods for identifying candidates for anti-mitochondrial therapy, and in particular mitochondrial biogenesis inhibitor therapy. Diagnostic kits including reagents for determining transcripts or probes of high prognostic value are also disclosed. Additionally, mitochondrial biogenesis inhibitors may be used as anti-cancer agents for diverse oncogenic stimuli, including for example, c-MYC and H-Ras oncogenes, as well as environmental stimuli such as, for example rotenone.

Patent
23 Oct 2018
TL;DR: The present disclosure relates to compounds that bind to flavin-containing enzymes and inhibit mitochondrial function, referred to herein as mitoflavoscins as mentioned in this paper, and methods of screening compounds for mitochondrial inhibition and anti-cancer properties are disclosed.
Abstract: The present disclosure relates to compounds that bind to flavin-containing enzymes and inhibit mitochondrial function, referred to herein as mitoflavoscins. Methods of screening compounds for mitochondrial inhibition and anti-cancer properties are disclosed. Also described are methods of using mitoflavoscins to prevent or treat cancer, bacterial infections, and pathogenic yeast, as well as methods of using mitoflavoscins to provide anti-aging benefits. Specific mitoflavoscin compounds are also disclosed.