scispace - formally typeset
Search or ask a question

Showing papers by "Hugo M. Horlings published in 2019"


Journal ArticleDOI
07 Feb 2019-Cell
TL;DR: It is demonstrated that dysfunctional T cells are the major intratumoral proliferating immune cell compartment and that the intensity of the dysfunctional signature is associated with tumor reactivity.

670 citations


Journal ArticleDOI
TL;DR: A pick-the-winner clinical trial design in patients with metastatic triple-negative breast cancer shows that immune induction with doxorubicin or cisplatin may improve clinical responses to PD-1 blockade and induce a more favorable tumor microenvironment.
Abstract: The efficacy of programmed cell death protein 1 (PD-1) blockade in metastatic triple-negative breast cancer ( TNBC ) is low1–5, highlighting a need for strategies that render the tumor microenvironment more sensitive to PD-1 blockade. Preclinical research has suggested immunomodulatory properties for chemotherapy and irradiation6–13. In the first stage of this adaptive, non-comparative phase 2 trial, 67 patients with metastatic TNBC were randomized to nivolumab (1) without induction or with 2-week low-dose induction, or with (2) irradiation (3 × 8 Gy), (3) cyclophosphamide, (4) cisplatin or (5) doxorubicin, all followed by nivolumab. In the overall cohort, the objective response rate (ORR; iRECIST14) was 20%. The majority of responses were observed in the cisplatin (ORR 23%) and doxorubicin (ORR 35%) cohorts. After doxorubicin and cisplatin induction, we detected an upregulation of immune-related genes involved in PD-1–PD-L1 (programmed death ligand 1) and T cell cytotoxicity pathways. This was further supported by enrichment among upregulated genes related to inflammation, JAK–STAT and TNF-α signaling after doxorubicin. Together, the clinical and translational data of this study indicate that short-term doxorubicin and cisplatin may induce a more favorable tumor microenvironment and increase the likelihood of response to PD-1 blockade in TNBC. These data warrant confirmation in TNBC and exploration of induction treatments prior to PD-1 blockade in other cancer types. A pick-the-winner clinical trial design in patients with metastatic triple-negative breast cancer shows that immune induction with doxorubicin or cisplatin may improve clinical responses to PD-1 blockade and induce a more favorable tumor microenvironment.

522 citations


Journal ArticleDOI
TL;DR: The functional roles of identified mutations within the context of endometriosis remain unclear and causality cannot be established, and rates of detectable somatic cancer-driver events between IE and DE are not statistically significant, while KRAS activating mutations were more prevalent in DE.
Abstract: Study question Does incisional endometriosis (IE) harbor somatic cancer-driver mutations? Summary answer We found that approximately one-quarter of IE cases harbor somatic-cancer mutations, which commonly affect components of the MAPK/RAS or PI3K-Akt-mTor signaling pathways. What is known already Despite the classification of endometriosis as a benign gynecological disease, it shares key features with cancers such as resistance to apoptosis and stimulation of angiogenesis and is well-established as the precursor of clear cell and endometrioid ovarian carcinomas. Our group has recently shown that deep infiltrating endometriosis (DE), a form of endometriosis that rarely undergoes malignant transformation, harbors recurrent somatic mutations. Study design, size, duration In a retrospective study comparing iatrogenically induced and endogenously occurring forms of endometriosis unlikely to progress to cancer, we examined endometriosis specimens from 40 women with IE and 36 women with DE. Specimens were collected between 2004 and 2017 from five hospital sites in either Canada, Germany or the Netherlands. IE and DE cohorts were age-matched and all women presented with histologically typical endometriosis without known history of malignancy. Participants/materials, setting, methods Archival tissue specimens containing endometriotic lesions were macrodissected and/or laser-capture microdissected to enrich endometriotic stroma and epithelium and a hypersensitive cancer hotspot sequencing panel was used to assess for presence of somatic mutations. Mutations were subsequently validated using droplet digital PCR. PTEN and ARID1A immunohistochemistry (IHC) were performed as surrogates for somatic events resulting in functional loss of respective proteins. Main results and the role of chance Overall, we detected somatic cancer-driver events in 11 of 40 (27.5%) IE cases and 13 of 36 (36.1%) DE cases, including hotspot mutations in KRAS, ERBB2, PIK3CA and CTNNB1. Heterogeneous PTEN loss occurred at similar rates in IE and DE (7/40 vs 5/36, respectively), whereas ARID1A loss only occurred in a single case of DE. While rates of detectable somatic cancer-driver events between IE and DE are not statistically significant (P > 0.05), KRAS activating mutations were more prevalent in DE. Limitations, reasons for caution Detection of somatic cancer-driver events were limited to hotspots analyzed in our panel-based sequencing assay and loss of protein expression by IHC from archival tissue. Whole genome or exome sequencing, or epigenetic analysis may uncover additional somatic alterations. Moreover, because of the descriptive nature of this study, the functional roles of identified mutations within the context of endometriosis remain unclear and causality cannot be established. Wider implications of the findings The alterations we report may be important in driving the growth and survival of endometriosis in ectopic regions of the body. Given the frequency of mutation in surgically displaced endometrium (IE), examination of similar somatic events in eutopic endometrium, as well as clinically annotated cases of other forms of endometriosis, in particular endometriomas that are most commonly linked to malignancy, is warranted. Study funding/competing interest(s) This study was funded by a Canadian Cancer Society Impact Grant [701603, PI Huntsman], Canadian Institutes of Health Research Transitional Open Operating Grant [MOP-142273, PI Yong], the Canadian Institutes of Health Research Foundation Grant [FDN-154290, PI Huntsman], the Canadian Institutes of Health Research Project Grant [PJT-156084, PIs Yong and Anglesio], and the Janet D. Cottrelle Foundation through the BC Cancer Foundation [PI Huntsman]. D.G. Huntsman is a co-founder and shareholder of Contextual Genomics Inc., a for profit company that provides clinical reporting to assist in cancer patient treatment. R. Aguirre-Hernandez, J. Khattra and L.M. Prentice have a patent MOLECULAR QUALITY ASSURANCE METHODS FOR USE IN SEQUENCING pending and are current (or former) employees of Contextual Genomics Inc. The remaining authors have no competing interests to declare. Trial registration number Not applicable.

68 citations


Journal ArticleDOI
TL;DR: These exploratory analyses of a prospective trial in luminal breast cancer suggest high CD8 infiltration is associated with unfavorable outcome and that PI3K pathway alterations might be associated with the composition of the tumor microenvironment.
Abstract: The presence of tumor-infiltrating lymphocytes (TILs) is correlated with good prognosis and outcome after (immuno)therapy in triple-negative and HER2-positive breast cancer. However, the role of TILs in luminal breast cancer is less clear. Emerging evidence has now demonstrated that genetic aberrations in malignant cells influence the immune landscape of tumors. Phosphatidylinositol 3-kinase (PI3K) is the most common altered pathway in ER-positive breast cancer. It is unknown whether changes in the PI3K pathway result in a different composition of the breast tumor microenvironment. Here we present the retrospective analysis of a prospective randomized trial in ER-positive breast cancer on the prognostic and predictive value of specific tumor-associated lymphocytes in the context of PI3K alterations. We included 563 ER-positive tumors from a multicenter trial for stage I to III postmenopausal breast cancer patients, who were randomized to tamoxifen or no adjuvant therapy. The amount of CD8-, CD4-, and FOXP3-positive cells was evaluated by immunohistochemistry and quantified by imaging-analysis software. We analyzed the associations between PIK3CA hotspot mutations, PTEN expression, phosphorylated proteins of the PI3K and MAPK pathway (p-AKT, p-ERK1/2, p-4EBP1, p-p70S6K), and recurrence-free interval after adjuvant tamoxifen or no adjuvant treatment. CD8-positive lymphocytes were significantly more abundant in PIK3CA-mutated tumors (OR = 1.65; 95% CI 1.03–2.68). While CD4 and FOXP3 were not significantly associated with prognosis, patients with tumors classified as CD8-high had increased risk of recurrence (HR = 1.98; 95% CI 1.14–3.41; multivariable model including PIK3CA status, treatment arm, and other standard clinicopathological variables). Lymphocytes were more often present in tumors with increased PI3K downstream phosphorylation. This was most pronounced for FOXP3-positive cells. These exploratory analyses of a prospective trial in luminal breast cancer suggest high CD8 infiltration is associated with unfavorable outcome and that PI3K pathway alterations might be associated with the composition of the tumor microenvironment.

67 citations


Journal ArticleDOI
TL;DR: The EMT status of breast cancers, as defined by the presence of a core EMT gene expression signature is associated with non-basal-type tumors, but not with the pattern of distant metastasis.
Abstract: Epithelial-to-mesenchymal transition (EMT) has been implicated as an important step in the development of distant metastases. We therefore wished to study EMT status of primary breast carcinomas from patients who during follow-up developed distant metastases. mRNA expression profiles of primary breast carcinoma samples (n = 151) from patients who developed metastatic disease were analyzed and EMT status was designated using a previously described EMT-core signature. EMT status of the primary tumor was correlated to clinicopathological characteristics, molecular subtypes, metastasis pattern, chemotherapy response and survival outcomes. In addition, using immunohistochemistry, the expression levels of several proteins implicated in EMT were studied (CDH1, CDH2, NAT1, SNAI2, TWIST1, VIM, and ZEB1) compared with the designated EMT status and survival. Utilizing the 130-gene-EMT-core signature, 66.2% of the primary tumors in the current study was assessed as EMT-activated. In contrast to our expectations, analyses revealed that 84.6% of Luminal A tumors, 65.1% of Luminal B tumors, and 55.6% of HER2-like had an activated EMT status, compared to only 25% of the basal-type tumors (p < 0.001). EMT status was not correlated to the pattern of metastatic disease, metastasis-specific survival, and overall survival. Similarly, there was not a significant association between EMT status of the primary tumor and chemotherapy response in the metastatic setting. Immunostaining for NAT1 and TWIST1 correlated with the EMT status (p 0.003 and p 0.047, respectively). Multivariate analyses showed that NAT1 and TWIST1 staining was significantly associated with EMT status regardless of the estrogen receptor status of the tumors (p values: 0.020 and 0.027, respectively). The EMT status of breast cancers, as defined by the presence of a core EMT gene expression signature is associated with non-basal-type tumors, but not with the pattern of distant metastasis. Of several potential immunohistochemical EMT markers, only NAT1 and TWIST1 expression levels were associated with the gene expression-based EMT status.

34 citations


Journal ArticleDOI
TL;DR: An unique gene expression signature which is specific to visceral metastasis is identified and found to be associated with survival status of the patients (p < .001).
Abstract: Visceral organ metastasis is associated with poor survival outcomes in terms of metastasis free- and overall survival in breast carcinomas. Identification of a gene expression profile in tumours that selects a subpopulation of patients that is more likely to develop visceral organ metastases will help elucidate mechanisms for the development of distant metastases and could be of clinical value. With this study we aimed to determine genomic predictors that would help to distinguish breast cancer patients with more likelihood to develop visceral metastasis. Gene expression profiling data of 157 primary tumours from breast cancer patients who developed distant metastases were analyzed and differentially expressed genes between the group of tumours with visceral metastasis and the those without visceral metastases were identified. Published data were used to validate our findings. Multivariate logistic regression tests were applied to further investigate the association between the gene-expression-signature and clinical variables. Survival analyses were performed by the Kaplan-Meier method. Fourteen differentially expressed genes (WDR6, CDYL, ATP6V0A4, CHAD, IDUA, MYL5, PREP, RTN4IP1, BTG2, TPRG1, ABHD14A, KIF18A, S100PBP and BEND3) were identified between the group of tumours with and without visceral metastatic disease. Five of these genes (CDYL, ATP6V0A4, PREP, RTN4IP1 and KIF18A) were up-regulated and the other genes were down-regulated. This gene expression signature was validated in the training and in the independent data set (p 2.13e− 08 and p 9.68e− 06, respectively). Multivariate analyses revealed that the 14-gene-expression-signature was associated with visceral metastatic disease (p 0.001, 95% CI 1.43–4.27), independent of other clinicopathologic features. This signature has been also found to be associated with survival status of the patients (p < .001). We have identified an unique gene expression signature which is specific to visceral metastasis. This 14-gene-expression-signature may play a role in identifying the subgroup of patients with potential to develop visceral metastasis.

31 citations


Journal ArticleDOI
TL;DR: There is a lower inter-pathologist concordance for cell-specific quantification as compared to overall infiltration quantification and the need for standardized immune characterization beyond TIL is emphasized.
Abstract: Breast cancer (BC) immune infiltrates play a critical role in tumor progression and response to treatment. Besides stromal tumor infiltrating lymphocytes (sTILs) which have recently reached level 1B evidence as a prognostic marker in triple negative BC, a plethora of methods to assess immune infiltration exists, and it is unclear how these compare to each other and if they can be used interchangeably. Two experienced pathologists scored sTIL, intra-tumoral TIL (itTIL), and 6 immune cell types (CD3+, CD4+, CD8+, CD20+, CD68+, FOXP3+) in the International Cancer Genomics Consortium breast cancer cohort using hematoxylin and eosin-stained (n = 243) and immunohistochemistry-stained tissue microarrays (n = 254) and whole slides (n = 82). The same traits were evaluated using transcriptomic- and methylomic-based deconvolution methods or signatures. The concordance correlation coefficient (CCC) between pathologists for sTIL was very good (0.84) and for cell-specific immune infiltrates slightly lower (0.63–0.66). Comparison between tissue microarray and whole slide pathology scores revealed systematically higher values in whole slides (ratio 2.60–5.98). The Spearman correlations between microscopic sTIL and transcriptomic- or methylomic-based assessment of immune infiltrates were highly variable (r = 0.01–0.56). Similar observations were made for cell type-specific quantifications (r = 0.001–0.54). We observed a strong inter-method variability between the omics-derived estimations, which is further cell type dependent. Finally, we demonstrated that most methods more accurately identify highly infiltrated (sTIL ≥ 60%; area under the curve, AUC, 0.64–0.99) as compared to lowly infiltrated tumors (sTIL ≤ 10%; AUC 0.52–0.82). There is a lower inter-pathologist concordance for cell-specific quantification as compared to overall infiltration quantification. Microscopic assessments are underestimated when considering small cores (tissue microarray) instead of whole slides. Results further highlight considerable differences between the microscopic-, transcriptomic-, and methylomic-based methods in the assessment of overall and cell-specific immune infiltration in BC. We therefore call for extreme caution when assessing immune infiltrates using current methods and emphasize the need for standardized immune characterization beyond TIL.

27 citations


Journal ArticleDOI
TL;DR: It is hypothesized that TP53-mutant premalignant lesions could be less susceptible to the protective effect of an early parity, which might explain the difference of parity-induced protection according to breast cancer subtypes.
Abstract: Although parity and age at first pregnancy are among the most known extrinsic factors that modulate breast cancer risk, their impact on the biology of subsequent breast cancer has never been explored in depth. Recent data suggest that pregnancy-induced tumor protection is different according to breast cancer subtypes, with parity and young age at first pregnancy being associated with a marked reduction in the risk of developing luminal subtype but not triple negative breast cancer. In this study, we investigated the imprint of parity and age at first pregnancy on the pattern of somatic mutations, somatic copy number alterations, transcriptomic profiles, and tumor immune microenvironment by assessing tumor-infiltrating lymphocytes (TILs) levels of subsequent breast cancer. A total of 313 patients with primary breast cancer with available whole genome, RNA sequencing, and TILs data were included in this study. We used a multivariate analysis adjusted for age at diagnosis, pathological stage, molecular subtypes, and histological subtypes. We compared nulliparous vs. parous, late parous vs. early parous, and nulliparous vs. pregnancy-associated breast cancer (PABC) patients. Late and early parous patients were grouped by using the median age at first pregnancy. PABC was defined as patients diagnosed up to 10 years postpartum. Genomic alterations of breast cancer were associated with age at first pregnancy but not with parity status alone. Independently of clinicopathological features, early parous patients developed tumors characterized by a higher number of Indels (Padj = 0.002), a lower frequency of CDH1 mutations (1.2% vs. 12.7%; Padj = 0.013), a higher frequency of TP53 mutations (50% vs. 22.5%; Padj = 0.010), and MYC amplification (28% vs. 7%; Padj = 0.008). PABC were associated with increased TILs infiltration (Padj = 0.0495). These findings highlight an unprecedented link between reproductive history and the genomic landscape of subsequent breast cancer. We further hypothesize that TP53-mutant premalignant lesions could be less susceptible to the protective effect of an early parity, which might explain the difference of parity-induced protection according to breast cancer subtypes. This work also advocates that reproductive history should be routinely collected in future large-scale genomic studies addressing the biology of female cancers.

24 citations


Journal ArticleDOI
TL;DR: In the version of this article originally published, there was an error in Fig. 3j as discussed by the authors, where a label on the heatmap read "TGF-α signaling via NF-κB".
Abstract: In the version of this article originally published, there was an error in Fig. 3j. A label on the heatmap read "TGF-α signaling via NF-κB". It should have read "TNF-α signaling via NF-κB". The error has been corrected in the HTML and PDF versions of this article.

8 citations