scispace - formally typeset
Search or ask a question

Showing papers by "Isabelle Baraffe published in 2010"


Journal ArticleDOI
TL;DR: In this paper, the authors present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet, and revisit the viability of the tidal heating hypothesis to explain the anomalously large radius of transiting giant planets.
Abstract: We present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet. Contrarily to previous similar studies, our calculations are based on the complete tidal evolution equations of the Hut (1981) model, valid at any order in eccentricity, obliquity and spin. We demonstrate both analytically and numerically that except if the system was formed with a nearly circular orbit (e < 0.2), consistently solving the complete tidal equations is mandatory to derive correct tidal evolution histories. We show that calculations based on tidal models truncated at 2nd order in eccentricity, as done in all previous studies, lead to quantitatively and sometimes even qualitatively erroneous tidal evolutions. As a consequence, tidal energy dissipation rates are severely underestimated in all these calculations and the characteristic timescales for the various orbital parameters evolutions can be wrong by up to three orders of magnitude. These discrepancies can by no means be justified by invoking the uncertainty in the tidal quality factors. Based on these complete, consistent calculations, we revisit the viability of the tidal heating hypothesis to explain the anomalously large radius of transiting giant planets. We show that even though tidal dissipation does provide a substantial contribution to the planet’s heat budget and can explain some of the moderately bloated hot-Jupiters, this mechanism can not explain alone the properties of the most inflated objects, including HD 209 458 b. Indeed, solving the complete tidal equations shows that enhanced tidal dissipation and thus orbit circularization occur too early during the planet’s evolution to provide enough extra energy at the present epoch. In that case either a third, so far undetected, low-mass companion must be present to keep exciting the eccentricity of the giant planet, or other mechanisms – stellar irradiation induced surface winds dissipating in the planet’s tidal bulges and thus reaching the convective layers, inefficient flux transport by convection in the planet’s interior – must be invoked, together with tidal dissipation, to provide all the pieces of the abnormally large exoplanet puzzle.

325 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of burst accretion on the internal structure of low-mass and solar type stars was studied and it was shown that episodic accretion can produce objects with significantly higher central temperatures than the ones of the non-accreting counterparts of same mass and age.
Abstract: Following up our recent analysis devoted to the impact of non steady accretion on the location of young low-mass stars or brown dwarfs in the Herzsprung-Russell diagram, we perform a detailed analysis devoted to the effect of burst accretion on the internal structure of low-mass and solar type stars. We find that episodic accretion can produce objects with significantly higher central temperatures than the ones of the non accreting counterparts of same mass and age. As a consequence, lithium depletion can be severely enhanced in these objects. This provides a natural explanation for the unexpected level of lithium depletion observed in young objects for the inferred age of their parent cluster. These results confirm the limited reliability of lithium abundance as a criterion for assessing or rejecting cluster membership. They also show that lithium is not a reliable age indicator, because its fate strongly depends on the past accretion history of the star. Under the assumption that giant planets primarily form in massive disks prone to gravitational instability and thus to accretion burst episodes, the same analysis also explains the higher Li depletion observed in planet hosting stars. At last, we show that, depending on the burst rate and intensity, accretion outbursts can produce solar mass stars with lower convective envelope masses, at ages less than a few tens of Myr, than predicted by standard (non or slowly accreting) pre-main sequence models. This result has interesting, although speculative, implications for the recently discovered depletion of refractory elements in the Sun.

266 citations


Journal ArticleDOI
TL;DR: Theoretical models have now reached enough maturity to predict the characteristic properties of these new worlds, mass, radius, atmospheric signatures, and can be confronted with available observations as discussed by the authors.
Abstract: Tremendous progress in the science of extrasolar planets has been achieved since the discovery of a Jupiter orbiting the nearby Sun-like star 51 Pegasi in 1995. Theoretical models have now reached enough maturity to predict the characteristic properties of these new worlds, mass, radius, atmospheric signatures, and can be confronted with available observations. We review our current knowledge of the physical properties of exoplanets, internal structure and composition, atmospheric signatures, including expected biosignatures for exo-Earth planets, evolution, and the impact of tidal interaction and stellar irradiation on these properties for the short-period planets. We discuss the most recent theoretical achievements in the field and the still pending questions. We critically analyze the different solutions suggested to explain abnormally large radii of a significant fraction of transiting exoplanets. Special attention is devoted to the recently discovered transiting objects in the overlapping mass range between massive planets and low-mass brown dwarfs, stressing the ambiguous nature of these bodies, and we discuss the possible observable diagnostics to identify these two distinct populations. We also review our present understanding of planet formation and critically examine the different suggested formation mechanisms. We expect this review will provide the basic theoretical background to capture the essentials of the physics of exoplanet formation, structure and evolution and the related observable signatures.

208 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of magnetic activity both on models and on the observational analysis of eclipsing binary systems using a sample of such systems with accurate fundamental properties was tested, and it was shown that unrealistically high spot coverages need to be assumed to reproduce the observations.
Abstract: In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed from models are ~5%-10% lower and ~3%-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when mainly distributed over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when ~35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of ~3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to the explanation of the differences seen in some of the systems with shorter orbital periods.

171 citations


Journal ArticleDOI
TL;DR: In this article, the effect of magnetic activity both on models and on the observational analysis of eclipsing binary systems using a sample of such systems with accurate fundamental properties was tested, and it was shown that unrealistically high spot coverages need to be assumed to reproduce the observations.
Abstract: In recent years, analyses of eclipsing binary systems have unveiled differences between the observed fundamental properties of low-mass stars and those predicted by stellar structure models. Particularly, radius and effective temperatures computed from models are ~ 5-10% lower and ~ 3-5% higher than observed, respectively. These discrepancies have been attributed to different factors, notably to the high levels of magnetic activity present on these stars. In this paper, we test the effect of magnetic activity both on models and on the observational analysis of eclipsing binaries using a sample of such systems with accurate fundamental properties. Regarding stellar models, we have found that unrealistically high spot coverages need to be assumed to reproduce the observations. Tests considering metallicity effects and missing opacities on models indicate that these are not able to explain the radius discrepancies observed. With respect to the observations, we have tested the effect of several spot distributions on the light curve analysis. Our results show that spots cause systematic deviations on the stellar radii derived from light curve analysis when distributed mainly over the stellar poles. Assuming the existence of polar spots, overall agreement between models and observations is reached when ~ 35% spot coverage is considered on stellar models. Such spot coverage induces a systematic deviation in the radius determination from the light curve analysis of ~ 3% and is also compatible with the modulations observed on the light curves of these systems. Finally, we have found that the effect of activity or rotation on convective transport in partially radiative stars may also contribute to explain the differences seen in some of the systems with shorter orbital periods.

108 citations


Journal ArticleDOI
TL;DR: The Lyot project used an optimized Lyot coronagraph with extreme adaptive optics at the 3.63 m Advanced Electro-Optical System telescope to observe 86 stars from 2004 to 2007 as discussed by the authors.
Abstract: The Lyot project used an optimized Lyot coronagraph with extreme adaptive optics at the 3.63 m Advanced Electro-Optical System telescope to observe 86 stars from 2004 to 2007. In this paper, we give an overview of the survey results and a statistical analysis of the observed nondetections around 58 of our targets to place constraints on the population of substellar companions to nearby stars. The observations did not detect any companion in the substellar regime. Since null results can be as important as detections, we analyzed each observation to determine the characteristics of the companions that can be ruled out. For this purpose, we use a Monte Carlo approach to produce artificial companions and determine their detectability by comparison with the sensitivity curve for each star. All the non-detection results are combined using a Bayesian approach and we provide upper limits on the population of giant exoplanets and brown dwarfs for this sample of stars. Our nondetections confirm the rarity of brown dwarfs around solar-like stars and we constrain the frequency of massive substellar companions (M>40 M_J) at orbital separation between and 10 and 50 AU to be ≲20%.

48 citations


Journal ArticleDOI
TL;DR: The Lyot project used an optimized Lyot coronagraph with Extreme Adaptive Optics at the 3.63m Advanced Electro-Optical System telescope (AEOS) to observe 86 stars from 2004 to 2007 as discussed by the authors.
Abstract: The Lyot project used an optimized Lyot coronagraph with Extreme Adaptive Optics at the 3.63m Advanced Electro-Optical System telescope (AEOS) to observe 86 stars from 2004 to 2007. In this paper we give an overview of the survey results and a statistical analysis of the observed nondetections around 58 of our targets to place constraints on the population of substellar companions to nearby stars. The observations did not detect any companion in the substellar regime. Since null results can be as important as detections, we analyzed each observation to determine the characteristics of the companions that can be ruled out. For this purpose we use a Monte Carlo approach to produce artificial companions, and determine their detectability by comparison with the sensitivity curve for each star. All the non-detection results are combined using a Bayesian approach and we provide upper limits on the population of giant exoplanets and brown dwarfs for this sample of stars. Our nondetections confirm the rarity of brown dwarfs around solar-like stars and we constrain the frequency of massive substellar companions (M>40Mjup) at orbital separation between and 10 and 50 AU to be <20%.

37 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet, and showed that the complete evolution equations of the Hut model is mandatory to derive correct tidal evolution histories, except if the system was formed with a nearly circular orbit.
Abstract: In this paper, we present the consistent evolution of short-period exoplanets coupling the tidal and gravothermal evolution of the planet. Contrarily to previous similar studies, our calculations are based on the complete tidal evolution equations of the Hut model, valid at any order in eccentricity, obliquity and spin. We demonstrate, both analytically and numerically, that, except if the system was formed with a nearly circular orbit (e<0.2), solving consistently the complete tidal equations is mandatory to derive correct tidal evolution histories. We show that calculations based on tidal models truncated at second order in eccentricity, as done in all previous studies, lead to erroneous tidal evolutions. As a consequence, tidal energy dissipation rates are severely underestimated in all these calculations and the characteristic timescales for the various orbital parameters evolutions can be wrong by up to three orders in magnitude. Based on these complete, consistent calculations, we revisit the viability of the tidal heating hypothesis to explain the anomalously large radius of transiting giant planets. We show that, even though tidal dissipation does provide a substantial contribution to the planet's heat budget and can explain some of the moderately bloated hot-Jupiters, this mechanism can not explain alone the properties of the most inflated objects, including HD 209458b. Indeed, solving the complete tidal equations shows that enhanced tidal dissipation and thus orbit circularization occur too early during the planet's evolution to provide enough extra energy at the present epoch. In that case another mechanisms, such as stellar irradiation induced surface winds dissipating in the planet's tidal bulges, or inefficient convection in the planet's interior must be invoked, together with tidal dissipation, to provide all the pieces of the abnormally large exoplanet puzzle.

17 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examine the possibility to constrain the nature of a massive substellar object from the various observables provided by the combination of Radial Velocity and Photometry measurements.
Abstract: The recent detection of the transit of very massive substellar companions (CoRoT-3b, Deleuil et al. 2008; CoRoT-15b, Bouchy et al. 2010; WASP-30b, Anderson et al. 2010; Hat-P-20b, Bakos et al. 2010) provides a strong constraint to planet and brown dwarf formation and migration mechanisms. Whether these objects are brown dwarfs originating from the gravitational collapse of a dense molecular cloud that, at the same time, gave birth to the more massive stellar companion, or whether they are planets that formed through core accretion of solids in the protoplanetary disk can not always been determined unambiguously and the mechanisms responsible for their short orbital distances are not yet fully understood. In this contribution, we examine the possibility to constrain the nature of a massive substellar object from the various observables provided by the combination of Radial Velocity and Photometry measurements (e.g. M_p, R_p, M_s, Age, a, e...). In a second part, developments in the modeling of tidal evolution at high eccentricity and inclination - as measured for HD 80 606 with e=0.9337 (Naef et al. 2001), XO-3 with a stellar obliquity >37.3+-3.7 deg (Hebrard et al. 2008; Winn et al. 2009) and several other exoplanets - are discussed along with their implication in the understanding of the radius anomaly problem of extrasolar giant planets.

15 citations


Journal ArticleDOI
TL;DR: In this article, the effect of burst accretion on the internal structure of low-mass and solar type stars was studied and it was shown that episodic accretion can produce objects with significantly higher central temperatures than the ones of the non-accreting counterparts of same mass and age.
Abstract: Following up our recent analysis devoted to the impact of non steady accretion on the location of young low-mass stars or brown dwarfs in the Herzsprung-Russell diagram, we perform a detailed analysis devoted to the effect of burst accretion on the internal structure of low-mass and solar type stars. We find that episodic accretion can produce objects with significantly higher central temperatures than the ones of the non accreting counterparts of same mass and age. As a consequence, lithium depletion can be severely enhanced in these objects. This provides a natural explanation for the unexpected level of lithium depletion observed in young objects for the inferred age of their parent cluster. These results confirm the limited reliability of lithium abundance as a criterion for assessing or rejecting cluster membership. They also show that lithium is not a reliable age indicator, because its fate strongly depends on the past accretion history of the star. Under the assumption that giant planets primarily form in massive disks prone to gravitational instability and thus to accretion burst episodes, the same analysis also explains the higher Li depletion observed in planet hosting stars. At last, we show that, depending on the burst rate and intensity, accretion outbursts can produce solar mass stars with lower convective envelope masses, at ages less than a few tens of Myr, than predicted by standard (non or slowly accreting) pre-main sequence models. This result has interesting, although speculative, implications for the recently discovered depletion of refractory elements in the Sun.

10 citations


01 Sep 2010
TL;DR: In this article, the authors report on the development of an implicit multi-D hydrodynamic code for stellar evolution, and present two test-cases relevant for the first scientific goal of the code: the simulation of convection in pulsating stars.
Abstract: We report on the development of an implicit multi-D hydrodynamic code for stellar evolution. We present two test-cases relevant for the first scientific goal of the code: the simulation of convection in pulsating stars. First results on a realistic stellar model are also presented.

Journal ArticleDOI
01 Oct 2010
TL;DR: In this article, the authors review the differences between current models of tidal evolution and their uncertainties and revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems.
Abstract: Thanks to the combination of transit photometry and radial velocity doppler measurements, we are now able to constrain theoretical models of the structure and evolution of objects in the whole mass range between icy giants and stars, including the giant planet/brown dwarf overlapping mass regime (Leconte et al 2009) In the giant planet mass range, the significant fraction of planets showing a larger radius than predicted by the models suggests that a missing physical mechanism which is either injecting energy in the deep convective zone or reducing the net outward thermal flux is taking place in these objects Several possibilities have been suggested for such a mechanism: • downward transport of kinetic energy originating from strong winds generated at the planet's surface (Showman & Guillot 2002),• enhanced opacity sources in hot-Jupiter atmospheres (Burrows et al 2007),• ohmic dissipation in the ionized atmosphere (Batygin & Stevenson 2010),• (inefficient) layered or oscillatory convection in the planet's interior (Chabrier & Baraffe 2007),• Tidal heating due to circularization of the orbit, as originally suggested by Bodenheimer, Lin & Mardling (2001) Here we first review the differences between current models of tidal evolution and their uncertainties We then revisit the viability of the tidal heating hypothesis using a tidal model which treats properly the highly eccentric and misaligned orbits commonly encountered in exoplanetary systems We stress again that the low order expansions in eccentricity often used in constant phase lag tidal models (ie constant Q) necessarily yields incorrect results as soon as the (present or initial) eccentricity exceeds ~ 02, as can be rigorously demonstrated from Kepler's equations

Journal ArticleDOI
TL;DR: In this paper, the authors summarize the present understanding and non-understanding of exoplanet formation, structure and evolution, in the light of the most recent discoveries, and conclude that the core-accretion scenario is the dominant one for planet formation.
Abstract: In this short review, we summarize our present understanding (and non-understanding) of exoplanet formation, structure and evolution, in the light of the most recent discoveries. Recent observations of transiting massive brown dwarfs seem to remarkably confirm the predicted theoretical mass-radius relationship in this domain. This mass-radius relationship provides, in some cases, a powerful diagnostic to distinguish planets from brown dwarfs of same mass, as for instance for Hat-P-20b. If confirmed, this latter observation shows that planet formation takes place up to at least 8 Jupiter masses. Conversely, observations of brown dwarfs down to a few Jupiter masses in young, low-extinction clusters strongly suggest an overlapping mass domain between (massive) planets and (low-mass) brown dwarfs, i.e. no mass edge between these two distinct (in terms of formation mechanism) populations. At last, the large fraction of heavy material inferred for many of the transiting planets confirms the core-accretion scenario as been the dominant one for planet formation.

Journal ArticleDOI
01 Oct 2010
TL;DR: In this paper, the authors summarize the present understanding and non-understanding of exoplanet formation, structure and evolution, in the light of the most recent discoveries, and conclude that the core-accretion scenario is the dominant one for planet formation.
Abstract: In this short review, we summarize our present understanding (and non-understanding) of exoplanet formation, structure and evolution, in the light of the most recent discoveries. Recent observations of transiting massive brown dwarfs seem to remarkably confirm the predicted theoretical mass-radius relationship in this domain. This mass-radius relationship provides, in some cases, a powerful diagnostic to distinguish planets from brown dwarfs of same mass, as for instance for Hat-P-20b. If confirmed, this latter observation shows that planet formation takes place up to at least 8 Jupiter masses. Conversely, observations of brown dwarfs down to a few Jupiter masses in young, low-extinction clusters strongly suggests an overlapping mass domain between (massive) planets and (low-mass) brown dwarfs, i.e. no mass edge between these two distinct (in terms of formation mechanism) populations. At last, the large fraction of heavy material inferred for many of the transiting planets confirms the core-accretion scenario as been the dominant one for planet formation.