scispace - formally typeset
Search or ask a question

Showing papers by "Jane C. Marks published in 2021"


Journal ArticleDOI
27 Apr 2021-Mbio
TL;DR: In this article, the growth and carbon uptake were higher in predatory bacteria compared to non-predatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA.
Abstract: Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to nonpredatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than nonpredatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolf-pack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than those of nonpredators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from those of nonpredators. This finding supports the ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow and that predatory bacteria influence element flow through microbial food webs.IMPORTANCE The word "predator" may conjure images of leopards killing and eating impala on the African savannah or of great white sharks attacking elephant seals off the coast of California. But microorganisms are also predators, including bacteria that kill and eat other bacteria. While predatory bacteria have been found in many environments, it has been challenging to document their importance in nature. This study quantified the growth of predatory and nonpredatory bacteria in soils (and one stream) by tracking isotopically labeled substrates into newly synthesized DNA. Predatory bacteria were more active than nonpredators, and obligate predators, such as Bdellovibrionales and Vampirovibrionales, increased in growth rate in response to added substrates at the base of the food chain, strong evidence of trophic control. This work provides quantitative measures of predator activity and suggests that predatory bacteria-along with protists, nematodes, and phages-are active and important in microbial food webs.

34 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the relationship between microbial biodiversity and the temperature sensitivity (Q10) of individual taxa, and found that differences in the Q10 of soil respiration can explain differences in microbial diversity and temperature sensitivity.
Abstract: Microorganisms drive soil carbon mineralization and changes in their activity with increased temperature could feedback to climate change. Variation in microbial biodiversity and the temperature sensitivities (Q10) of individual taxa may explain differences in the Q10 of soil respiration, a possibility not previously examined due to methodological limitations. Here, we show phylogenetic and taxonomic variation in the Q10 of growth (5–35 °C) among soil bacteria from four sites, one from each of Arctic, boreal, temperate, and tropical biomes. Differences in the temperature sensitivities of taxa and the taxonomic composition of communities determined community-assembled bacterial growth Q10, which was strongly predictive of soil respiration Q10 within and across biomes. Our results suggest community-assembled traits of microbial taxa may enable enhanced prediction of carbon cycling feedbacks to climate change in ecosystems across the globe.

34 citations


Journal ArticleDOI
TL;DR: In this article, a series of three experiments designed to provide insight into Leptospira presence in the soil were performed to evaluate the role of rivers and water bodies in the epidemiology of leptospirosis.
Abstract: Leptospira are shed into the environment via urine of infected animals. Rivers are thought to be an important risk factor for transmission to humans, though much is unknown about the types of environment or characteristics that favor survival. To address this, we screened for Leptospira DNA in two rivers in rural Ecuador where Leptospirosis is endemic. We collected 112 longitudinal samples and recorded pH, temperature, river depth, precipitation, and dissolved oxygen. We also performed a series of three experiments designed to provide insight into Leptospira presence in the soil. In the first soil experiment, we characterized prevalence and co-occurrence of Leptospira with other bacterial taxa in the soil at dispersed sites along the rivers (n = 64). In the second soil experiment, we collected 24 river samples and 48 soil samples at three points along eight transects to compare the likelihood of finding Leptospira in the river and on the shore at different distances from the river. In a third experiment, we tested whether Leptospira presence is associated with soil moisture by collecting 25 soil samples from two different sites. In our river experiment, we found pathogenic Leptospira in only 4 (3.7%) of samples. In contrast, pathogenic Leptospira species were found in 22% of shore soil at dispersed sites, 16.7% of soil samples (compared to 4.2% of river samples) in the transects, and 40% of soil samples to test for associations with soil moisture. Our data are limited to two sites in a highly endemic area, but the scarcity of Leptospira DNA in the river is not consistent with the widespread contention of the importance of river water for leptospirosis transmission. While Leptospira may be shed directly into the river, onto the shores, or washed into the river from more remote sites, massive dilution and limited persistence in rivers may reduce the environmental load and therefore, the epidemiological significance of such sources. It is also possible that transmission may occur more frequently on shores where people are liable to be barefoot. Molecular studies that further explore the role of rivers and water bodies in the epidemiology of leptospirosis are needed.

10 citations


Journal ArticleDOI
TL;DR: This article showed that 15 years of warming by transplanting plant-soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil.
Abstract: The carbon stored in soil exceeds that of plant biomass and atmospheric carbon and its stability can impact global climate. Growth of decomposer microorganisms mediates both the accrual and loss of soil carbon. Growth is sensitive to temperature and given the vast biological diversity of soil microorganisms, the response of decomposer growth rates to warming may be strongly idiosyncratic, varying among taxa, making ecosystem predictions difficult. Here, we show that 15 years of warming by transplanting plant-soil mesocosms down in elevation, strongly reduced the growth rates of soil microorganisms, measured in the field using undisturbed soil. The magnitude of the response to warming varied among microbial taxa. However, the direction of the response-reduced growth-was universal and warming explained twofold more variation than did the sum of taxonomic identity and its interaction with warming. For this ecosystem, most of the growth responses to warming could be explained without taxon-specific information, suggesting that in some cases microbial responses measured in aggregate may be adequate for climate modeling. Long-term experimental warming also reduced soil carbon content, likely a consequence of a warming-induced increase in decomposition, as warming-induced changes in plant productivity were negligible. The loss of soil carbon and decreased microbial biomass with warming may explain the reduced growth of the microbial community, more than the direct effects of temperature on growth. These findings show that direct and indirect effects of long-term warming can reduce growth rates of soil microbes, which may have important feedbacks to global warming.

10 citations


Journal ArticleDOI
TL;DR: In this paper, the authors test whether fungi and bacteria that enter streams on senesced leaves are growing during decomposition and compare their abundances and growth to bacteria and fungi that colonize leaves in the water, finding that most of the growing fungal species on decomposing leaves enter the water with the leaf, whereas most growing bacteria colonize from the water column.
Abstract: When leaves fall in rivers, microbial decomposition commences within hours. Microbial assemblages comprising hundreds of species of fungi and bacteria can vary with stream conditions, leaf litter species, and decomposition stage. In terrestrial ecosystems, fungi and bacteria that enter soils with dead leaves often play prominent roles in decomposition, but their role in aquatic decomposition is less known. Here, we test whether fungi and bacteria that enter streams on senesced leaves are growing during decomposition and compare their abundances and growth to bacteria and fungi that colonize leaves in the water. We employ quantitative stable isotope probing to identify growing microbes across four leaf litter species and two decomposition times. We find that most of the growing fungal species on decomposing leaves enter the water with the leaf, whereas most growing bacteria colonize from the water column. Results indicate that the majority of bacteria found on litter are growing, whereas the majority of fungi are dormant. Both bacterial and fungal assemblages differed with leaf type on the dried leaves and throughout decomposition. This research demonstrates the importance of fungal species that enter with the leaf on aquatic decomposition and the prominence of bacteria that colonize decomposing leaves in the water.

7 citations


Journal ArticleDOI
01 Oct 2021-Ecology
TL;DR: This paper investigated plasticity in cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems and found that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems.
Abstract: Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world.

4 citations


Journal ArticleDOI
TL;DR: These results challenge traditional views of litter quality by demonstrating that trophic efficiency is negatively associated with decomposition rate across these four leaf types.
Abstract: Despite abounding evidence that leaf litter traits can predict decomposition rate, the way these traits influence trophic efficiency and element transfer to higher trophic levels is not resolved. Here, we used litter labeled with 13C and 15N stable isotopes to trace fluxes of litter C and N from four leaf types to freshwater invertebrate communities. We measured absolute (mg C or N) and relative assimilation (percentage of litter C or N incorporated into invertebrate biomass relative to C and N lost during decomposition). Four patterns emerged: (1) Invertebrate communities assimilated more C and N from slowly decomposing litter than communities feeding on rapidly decomposing litter; (2) absolute assimilation of both C and N in leaf packs was positively correlated with the relative biomass of invertebrate taxa in leaf packs; (3) Chironomidae larvae, which colonize packs in the early decomposition stages, assimilated the most C and N by the end of the 35-day experiment; and (4) most taxa, spanning five functional feeding groups (collector–gatherers, shredders, collector–filterers, scrapers, and predators), showed similar patterns in both absolute and relative assimilation across leaf types. These results challenge traditional views of litter quality by demonstrating that trophic efficiency is negatively associated with decomposition rate across these four leaf types.

3 citations



Posted ContentDOI
25 Feb 2021-bioRxiv
TL;DR: This article showed that growth and carbon uptake were higher in predatory bacteria compared to non-predatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA.
Abstract: Predation structures food webs, influences energy flow, and alters rates and pathways of nutrient cycling through ecosystems, effects that are well documented for macroscopic predators. In the microbial world, predatory bacteria are common, yet little is known about their rates of growth and roles in energy flows through microbial food webs, in part because these are difficult to quantify. Here, we show that growth and carbon uptake were higher in predatory bacteria compared to non-predatory bacteria, a finding across 15 sites, synthesizing 82 experiments and over 100,000 taxon-specific measurements of element flow into newly synthesized bacterial DNA. Obligate predatory bacteria grew 36% faster and assimilated carbon at rates 211% higher than non-predatory bacteria. These differences were less pronounced for facultative predators (6% higher growth rates, 17% higher carbon assimilation rates), though high growth and carbon assimilation rates were observed for some facultative predators, such as members of the genera Lysobacter and Cytophaga, both capable of gliding motility and wolfpack hunting behavior. Added carbon substrates disproportionately stimulated growth of obligate predators, with responses 63% higher than non-predators for the Bdellovibrionales and 81% higher for the Vampirovibrionales, whereas responses of facultative predators to substrate addition were no different from non-predators. This finding supports ecological theory that higher productivity increases predator control of lower trophic levels. These findings also indicate that the functional significance of bacterial predators increases with energy flow, and that predatory bacteria influence element flow through microbial food webs.

1 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of urbanization on ecosystem processes including organic matter decomposition are poorly understood and the relationship between decomposition and nutrient levels are inconsistent, possibly due to interactions among stimulatory and inhibitory factors.
Abstract: Urbanization can result in multiple stressors for freshwater ecosystems including altered flow regimes, higher sediment loads and increased inorganic nutrient supply. The effects of urbanization on ecosystem processes including organic matter decomposition are poorly understood. Relationships between decomposition and nutrient levels are inconsistent, possibly due to interactions among stimulatory and inhibitory factors. We incubated leaf litter from two tree species (maple and oak) that differ in foliar chemistry in four streams that varied in the extent of suburbanization (human population density, concentrations of nitrate and chloride) and assessed decomposition rates and microbial activity. We found both stream and leaf species effects but the response of maple to the gradient of suburbanization was much stronger than oak. Although suburban streams were associated with reduced interspecific variability in decomposition rates, fungal biomass only responded to differences among leaf species. We observed high rates of mineralization suggesting that decomposition was not nutrient limited. Results show that multiple stressors may act antagonistically to create a muted signal of suburbanization, conditions where the effects of leaf species emerge to drive microbial activity. Understanding how decomposition responds to multiple factors associated with urbanization is essential for predicting how detrital-based food webs will respond to the Anthropocene.