scispace - formally typeset
Search or ask a question
Author

Jason Brooks

Bio: Jason Brooks is an academic researcher from Universal Display Corporation. The author has contributed to research in topics: Aryl & OLED. The author has an hindex of 32, co-authored 81 publications receiving 6485 citations. Previous affiliations of Jason Brooks include Princeton University & University of Southern California.
Topics: Aryl, OLED, Phosphorescence, Moiety, Ring (chemistry)


Papers
More filters
Journal ArticleDOI
TL;DR: The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported, with well-resolved vibronic fine structure observed in all of the emission spectra.
Abstract: The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported. The complexes have the general structure C∧NPt(O∧O),where C∧N is a monoanionic cyclometalating ligand (e.g., 2-phenylpyridyl, 2-(2‘-thienyl)pyridyl, 2-(4,6-difluorophenyl)pyridyl, etc.) and O∧O is a β-diketonato ligand. Reaction of K2PtCl4 with a HC∧N ligand precursor forms the chloride-bridged dimer, C∧NPt(μ-Cl)2PtC∧N, which is cleaved with β-diketones such as acetyl acetone (acacH) and dipivaloylmethane (dpmH) to give the corresponding monomeric C∧NPt(O∧O) complex. The thpyPt(dpm) (thpy = 2-(2‘-thienyl)pyridyl) complex has been characterized using X-ray crystallography. The bond lengths and angles for this complex are similar to those of related cyclometalated Pt complexes. There are two independent molecular dimers in the asymmetric unit, with intermolecular spacings of 3.45 and 3.56 A, consistent with moderate π−π interactions and no evident Pt−Pt interactions. Most of the C∧NPt(O∧O) complexes...

1,354 citations

Journal ArticleDOI
TL;DR: In this article, three Ir(III) complexes used as principal dopants in organic electrophosphorescent diodes have very high photoluminescence quantum efficiency (ηPL) in a solid-state film.
Abstract: We demonstrate that three Ir(III) complexes used as principal dopants in organic electrophosphorescent diodes have very high photoluminescence quantum efficiency (ηPL) in a solid-state film. The green emitting complex, fac-tris(2-phenylpyridinato)iridium(III) [Ir(ppy)3], the red-emitting bis[2-(2′-benzothienyl)pyridinato-N,C3′] (acetylacetonato)iridium(III) [Btp2Ir(acac)], and the blue complex bis[(4,6-difluorophenyl)pyridinato-N,C2](picolinato)iridium(III) (FIrpic) were prepared as codeposited films of varying concentration with 4,4′-bis(N-carbazolyl)-2,2′-biphenyl, a commonly used host material. The maximum ηPL values for Ir(ppy)3, Btp2Ir(acac), and FIrpic were, respectively, 97%±2% (at 1.5mol%), 51%±1% (at 1.4mol%), and 78%±1% (at 15mol%). Furthermore, we also observed that the maximum ηPL of FIrpic reached 99%±1% when doped into the high triplet energy host, m-bis(N-carbazolyl)benzene, at an optimal concentration of 1.2mol%.

688 citations

Journal ArticleDOI
TL;DR: In this article, the dopant molecules are based on a series of platinum(II) [2-(4,6-difluorophenyl)pyridinato-N,C2′] β-diketonates.
Abstract: Efficient white electrophosphorescence has been achieved with a single emissive dopant. The dopant in these white organic light emitting diodes (WOLEDs) emits simultaneously from monomer and aggregate states, leading to a broad spectrum and high quality white emission. The dopant molecules are based on a series of platinum(II) [2-(4,6-difluorophenyl)pyridinato-N,C2′] β-diketonates. All of the dopant complexes described herein have identical photophysics in dilute solution with structured blue monomer emission (λmax = 468, 500, 540 nm). A broad orange aggregate emission (λmax ≈ 580 nm) is also observed, when doped into OLED host materials. The intensity of the orange band increases relative to the blue monomer emission, as the doping level is increased. The ratio of monomer to aggregate emission can be controlled by the doping concentration, the degree of steric bulk on the dopant and by the choice of the host material. A doping concentration for which the monomer and excimer bands are approximately equal gives an emission spectrum closest to standard white illumination sources. WOLEDs have been fabricated with doped CBP and mCP luminescent layers (CBP = N,N′-dicarbazolyl-4,4′-biphenyl, mCP = N,N′-dicarbazolyl-3,5-benzene). The best efficiencies and color stabilities were achieved when an electron/exciton blocking layer (EBL) is inserted into the structure, between the hole transporting layer and doped CBP or mCP layer. The material used for an EBL in these devices was fac-tris(1-phenylpyrazolato-N,C2′)iridium(III). The EBL material effectively prevents electrons and excitons from passing through the emissive layer into the hole transporting NPD layer. CBP based devices gave a peak external quantum efficiency of 3.3 ± 0.3% (7.3 ± 0.7 lm W−1) at 1 cd m−2, and 2.3 ± 0.2% (5.2 ± 0.3 lm W−1) at 500 cd m−2. mCP based devices gave a peak external quantum efficiency of 6.4% (12.2 lm W−1, 17.0 cd A−1), CIE coordinates of 0.36, 0.44 and a CRI of 67 at 1 cd m−2 (CIE = Commission Internationale de l'Eclairage, CRI = color rendering index). The efficiency of the mCP based device drops to 4.3 ± 0.5% (8.1 ± 0.6 lm W−1, 11.3 cd A−1) at 500 cd m−2, however, the CIE coordinates and CRI remain unchanged.

504 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated solid-state self-quenching processes of highly efficient Ir(III) phosphorescent emitters by measuring thin film photoluminescence quantum efficiency and transient lifetime as a function of doping concentration in host matrix.
Abstract: Solid-state self-quenching processes of highly efficient Ir(III) phosphorescent emitters are investigated by the measurement of thin film photoluminescence quantum efficiency and transient lifetime as a function of doping concentration in a host matrix. The radiative decay rate constant is found to be independent from the average distance between dopant molecules (R), and the concentration-quenching rate constant is shown to be dependent on R(-6). The quenching dependence on R strongly suggests that luminescent concentration quenching in a phosphorescent Ir(III) complex:host film is controlled by dipole-dipole deactivating interactions as described by the Forster energy transfer model.

331 citations


Cited by
More filters
Journal ArticleDOI
14 May 2009-Nature
TL;DR: An improved OLED structure which reaches fluorescent tube efficiency and focuses on reducing energetic and ohmic losses that occur during electron–photon conversion, which could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.
Abstract: The development of white organic light-emitting diodes (OLEDs) holds great promise for the production of highly efficient large-area light sources. High internal quantum efficiencies for the conversion of electrical energy to light have been realized. Nevertheless, the overall device power efficiencies are still considerably below the 60-70 lumens per watt of fluorescent tubes, which is the current benchmark for novel light sources. Although some reports about highly power-efficient white OLEDs exist, details about structure and the measurement conditions of these structures have not been fully disclosed: the highest power efficiency reported in the scientific literature is 44 lm W(-1) (ref. 7). Here we report an improved OLED structure which reaches fluorescent tube efficiency. By combining a carefully chosen emitter layer with high-refractive-index substrates, and using a periodic outcoupling structure, we achieve a device power efficiency of 90 lm W(-1) at 1,000 candelas per square metre. This efficiency has the potential to be raised to 124 lm W(-1) if the light outcoupling can be further improved. Besides approaching internal quantum efficiency values of one, we have also focused on reducing energetic and ohmic losses that occur during electron-photon conversion. We anticipate that our results will be a starting point for further research, leading to white OLEDs having efficiencies beyond 100 lm W(-1). This could make white-light OLEDs, with their soft area light and high colour-rendering qualities, the light sources of choice for the future.

3,095 citations

Journal ArticleDOI
TL;DR: “United the authors stand, United they fall”–Aesop.
Abstract: "United we stand, divided we fall."--Aesop. Aggregation-induced emission (AIE) refers to a photophysical phenomenon shown by a group of luminogenic materials that are non-emissive when they are dissolved in good solvents as molecules but become highly luminescent when they are clustered in poor solvents or solid state as aggregates. In this Review we summarize the recent progresses made in the area of AIE research. We conduct mechanistic analyses of the AIE processes, unify the restriction of intramolecular motions (RIM) as the main cause for the AIE effects, and derive RIM-based molecular engineering strategies for the design of new AIE luminogens (AIEgens). Typical examples of the newly developed AIEgens and their high-tech applications as optoelectronic materials, chemical sensors and biomedical probes are presented and discussed.

2,322 citations

Journal ArticleDOI
13 Apr 2006-Nature
TL;DR: This device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 ± 0.6 lm W-1, respectively, and two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant.
Abstract: Lighting accounts for approximately 22 per cent of the electricity consumed in buildings in the United States, with 40 per cent of that amount consumed by inefficient (approximately 15 lm W(-1)) incandescent lamps. This has generated increased interest in the use of white electroluminescent organic light-emitting devices, owing to their potential for significantly improved efficiency over incandescent sources combined with low-cost, high-throughput manufacturability. The most impressive characteristics of such devices reported to date have been achieved in all-phosphor-doped devices, which have the potential for 100 per cent internal quantum efficiency: the phosphorescent molecules harness the triplet excitons that constitute three-quarters of the bound electron-hole pairs that form during charge injection, and which (unlike the remaining singlet excitons) would otherwise recombine non-radiatively. Here we introduce a different device concept that exploits a blue fluorescent molecule in exchange for a phosphorescent dopant, in combination with green and red phosphor dopants, to yield high power efficiency and stable colour balance, while maintaining the potential for unity internal quantum efficiency. Two distinct modes of energy transfer within this device serve to channel nearly all of the triplet energy to the phosphorescent dopants, retaining the singlet energy exclusively on the blue fluorescent dopant. Additionally, eliminating the exchange energy loss to the blue fluorophore allows for roughly 20 per cent increased power efficiency compared to a fully phosphorescent device. Our device challenges incandescent sources by exhibiting total external quantum and power efficiencies that peak at 18.7 +/- 0.5 per cent and 37.6 +/- 0.6 lm W(-1), respectively, decreasing to 18.4 +/- 0.5 per cent and 23.8 +/- 0.5 lm W(-1) at a high luminance of 500 cd m(-2).

2,118 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the key advantages of using quantum dots as luminophores in light-emitting devices (LEDs) and outlined the operating mechanisms of four types of QD-LEDs.
Abstract: This Review article summarizes the key advantages of using quantum dots (QDs) as luminophores in light-emitting devices (LEDs) and outlines the operating mechanisms of four types of QD-LED. The key scientific and technological challenges facing QD-LED commercialization are identified, together with on-going strategies to overcome these challenges.

2,086 citations

Journal ArticleDOI
TL;DR: In this article, the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality are discussed, as well as their widespread acceptance as solid-state lighting sources.
Abstract: White organic light-emitting devices (WOLEDs) have advanced over the last twelve years to the extent that these devices are now being considered as efficient solid-state lighting sources. Initially, WOLEDs were targeted towards display applications for use primarily as liquid-crystal display backlights. Now, their power efficiencies have surpassed those of incandescent sources due to improvements in device architectures, synthesis of novel materials, and the incorporation of electrophosphorescent emitters. This review discusses the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality. Hindrances to their widespread acceptance as solid-state lighting sources are also noted.

1,962 citations