scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Synthesis and characterization of phosphorescent cyclometalated platinum complexes.

01 Mar 2001-Inorganic Chemistry (American Chemical Society)-Vol. 41, Iss: 12, pp 3055-3066
TL;DR: The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported, with well-resolved vibronic fine structure observed in all of the emission spectra.
Abstract: The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported. The complexes have the general structure C∧NPt(O∧O),where C∧N is a monoanionic cyclometalating ligand (e.g., 2-phenylpyridyl, 2-(2‘-thienyl)pyridyl, 2-(4,6-difluorophenyl)pyridyl, etc.) and O∧O is a β-diketonato ligand. Reaction of K2PtCl4 with a HC∧N ligand precursor forms the chloride-bridged dimer, C∧NPt(μ-Cl)2PtC∧N, which is cleaved with β-diketones such as acetyl acetone (acacH) and dipivaloylmethane (dpmH) to give the corresponding monomeric C∧NPt(O∧O) complex. The thpyPt(dpm) (thpy = 2-(2‘-thienyl)pyridyl) complex has been characterized using X-ray crystallography. The bond lengths and angles for this complex are similar to those of related cyclometalated Pt complexes. There are two independent molecular dimers in the asymmetric unit, with intermolecular spacings of 3.45 and 3.56 A, consistent with moderate π−π interactions and no evident Pt−Pt interactions. Most of the C∧NPt(O∧O) complexes...
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality are discussed, as well as their widespread acceptance as solid-state lighting sources.
Abstract: White organic light-emitting devices (WOLEDs) have advanced over the last twelve years to the extent that these devices are now being considered as efficient solid-state lighting sources. Initially, WOLEDs were targeted towards display applications for use primarily as liquid-crystal display backlights. Now, their power efficiencies have surpassed those of incandescent sources due to improvements in device architectures, synthesis of novel materials, and the incorporation of electrophosphorescent emitters. This review discusses the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality. Hindrances to their widespread acceptance as solid-state lighting sources are also noted.

1,962 citations

Patent
13 Aug 2014
TL;DR: In this paper, the authors presented a heterocyclic compound and an organic light-emitting device including the HOC compound, which have high efficiency, low driving voltage, high luminance and long lifespan.
Abstract: The present invention provides a heterocyclic compound and an organic light-emitting device including the heterocyclic compound. The organic light-emitting devices using the heterocyclic compounds have high-efficiency, low driving voltage, high luminance and long lifespan.

1,346 citations

Journal ArticleDOI
TL;DR: Blue phosphorescence approaching the theoretical efficiency has also been achieved, which may overcome the final obstacle against the commercialization of full color display and white light sources from phosphorescent materials.
Abstract: Although organic light-emitting devices have been commercialized as flat panel displays since 1997, only singlet excitons were emitted. Full use of singlet and triplet excitons, electrophosphorescence, has attracted increasing attentions after the premier work made by Forrest, Thompson, and co-workers. In fact, red electrophosphorescent dye has already been used in sub-display of commercial mobile phones since 2003. Highly efficient green phosphorescent dye is now undergoing of commercialization. Very recently, blue phosphorescence approaching the theoretical efficiency has also been achieved, which may overcome the final obstacle against the commercialization of full color display and white light sources from phosphorescent materials. Combining light out-coupling structures with highly efficient phosphors (shown in the table-of-contents image), white emission with an efficiency matching that of fluorescent tubes (90 lm/W) has now been realized. It is possible to tune the color to the true white region by changing to a deep blue emitter and corresponding wide gap host and transporting material for the blue phosphor. In this article, recent progresses in red, green, blue, and white electrophosphorescent materials for OLEDs are reviewed, with special emphasis on blue electrophosphorescent materials.

1,240 citations

Journal ArticleDOI
TL;DR: Various types of cyclometalating chelates for which the favorable metal-chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature, are reviewed.
Abstract: One goal of this critical review is to provide advanced methodologies for systematic preparation of transition-metal based phosphors that show latent applications in the field of organic light emitting diodes (OLEDs). We are therefore reviewing various types of cyclometalating chelates for which the favorable metal–chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature. On the other hand, fine adjustment of ligand-centered π–π* electronic transitions allows tuning of emission wavelength across the whole visible spectrum. The cyclometalating chelates are then classified according to types of cyclometalating groups, i.e. either aromatic C–H or azolic N–H fragment, and the adjacent donor fragment involved in the formation of metallacycles; the latter is an N-containing heterocycle, N-heterocyclic (NHC) carbene fragment or even diphenylphosphino group. These cyclometalating ligands are capable to react with heavy transition-metal elements, namely: Ru(II), Os(II), Ir(III) and Pt(II), to afford a variety of highly emissive phosphors, for which the photophysical properties as a function of chelate or metal characteristics are systematically discussed. Using Ir(III) complexes as examples, the C^N chelates possessing both C–H site and N-heterocyclic donor group are essential for obtaining phosphors with emission ranging from sky-blue to saturated red, while the N^N chelates such as 2-pyridyl-C-linked azolates are found useful for serving as true-blue chromophores due to their increased ligand-centered π–π* energy gap. Lastly, the remaining NHC carbene and benzyl phosphine chelates are highly desirable to serve as ancillary chelates in localizing the electronic transition between the metal and remaining lower energy chromophoric chelates. As for the potential opto-electronic applications, many of them exhibit remarkable performance data, which are convincing to pave a broad avenue for further development of all types of phosphorescent displays and illumination devices (94 references).

1,188 citations

References
More filters
Journal ArticleDOI
10 Sep 1998-Nature
TL;DR: In this article, a host material doped with the phosphorescent dye PtOEP (PtOEP II) was used to achieve high energy transfer from both singlet and triplet states.
Abstract: The efficiency of electroluminescent organic light-emitting devices1,2 can be improved by the introduction3 of a fluorescent dye. Energy transfer from the host to the dye occurs via excitons, but only the singlet spin states induce fluorescent emission; these represent a small fraction (about 25%) of the total excited-state population (the remainder are triplet states). Phosphorescent dyes, however, offer a means of achieving improved light-emission efficiencies, as emission may result from both singlet and triplet states. Here we report high-efficiency (≳90%) energy transfer from both singlet and triplet states, in a host material doped with the phosphorescent dye 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II) (PtOEP). Our doped electroluminescent devices generate saturated red emission with peak external and internal quantum efficiencies of 4% and 23%, respectively. The luminescent efficiencies attainable with phosphorescent dyes may lead to new applications for organic materials. Moreover, our work establishes the utility of PtOEP as a probe of triplet behaviour and energy transfer in organic solid-state systems.

7,023 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host was described.
Abstract: We describe the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host. These devices exhibit peak external quantum and power efficiencies of 8.0% (28 cd/A) and 31 lm/W, respectively. At 100 cd/m2, the external quantum and power efficiencies are 7.5% (26 cd/A) and 19 lm/W at an operating voltage of 4.3 V. This performance can be explained by efficient transfer of both singlet and triplet excited states in the host to Ir(ppy)3, leading to a high internal efficiency. In addition, the short phosphorescent decay time of Ir(ppy)3 (<1 μs) reduces saturation of the phosphor at high drive currents, yielding a peak luminance of 100 000 cd/m2.

3,594 citations

Journal ArticleDOI
TL;DR: The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported, and three of the C(**)N2Ir(acac) complexes were used as dopants for organic light emitting diodes (OLEDs) and show some of the highest efficiencies reported for organic Light Emitting Diodes.
Abstract: The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported. The iridium complexes have two cyclometalated (C∧N) ligands and a single monoanionic, bidentate ancillary ligand (LX), i.e., C∧N2Ir(LX). The C∧N ligands can be any of a wide variety of organometallic ligands. The LX ligands used for this study were all β-diketonates, with the major emphasis placed on acetylacetonate (acac) complexes. The majority of the C∧N2Ir(acac) complexes phosphoresce with high quantum efficiencies (solution quantum yields, 0.1−0.6), and microsecond lifetimes (e.g., 1−14 μs). The strongly allowed phosphorescence in these complexes is the result of significant spin−orbit coupling of the Ir center. The lowest energy (emissive) excited state in these C∧N2Ir(acac) complexes is a mixture of 3MLCT and 3(π−π*) states. By choosing the appropriate C∧N ligand, C∧N2Ir(acac) complexes can be prepared which emit in any color from green to red. Simple, systematic changes in the C∧N ligands, whic...

2,655 citations