scispace - formally typeset
Journal ArticleDOI

Synthesis and characterization of phosphorescent cyclometalated platinum complexes.

Reads0
Chats0
TLDR
The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported, with well-resolved vibronic fine structure observed in all of the emission spectra.
Abstract
The synthesis, electrochemistry, and photophysics of a series of square planar Pt(II) complexes are reported. The complexes have the general structure C∧NPt(O∧O),where C∧N is a monoanionic cyclometalating ligand (e.g., 2-phenylpyridyl, 2-(2‘-thienyl)pyridyl, 2-(4,6-difluorophenyl)pyridyl, etc.) and O∧O is a β-diketonato ligand. Reaction of K2PtCl4 with a HC∧N ligand precursor forms the chloride-bridged dimer, C∧NPt(μ-Cl)2PtC∧N, which is cleaved with β-diketones such as acetyl acetone (acacH) and dipivaloylmethane (dpmH) to give the corresponding monomeric C∧NPt(O∧O) complex. The thpyPt(dpm) (thpy = 2-(2‘-thienyl)pyridyl) complex has been characterized using X-ray crystallography. The bond lengths and angles for this complex are similar to those of related cyclometalated Pt complexes. There are two independent molecular dimers in the asymmetric unit, with intermolecular spacings of 3.45 and 3.56 A, consistent with moderate π−π interactions and no evident Pt−Pt interactions. Most of the C∧NPt(O∧O) complexes...

read more

Citations
More filters
Journal ArticleDOI

White Organic Light‐Emitting Devices for Solid‐State Lighting

TL;DR: In this article, the advantages and disadvantages of several WOLED architectures in terms of efficiency and color quality are discussed, as well as their widespread acceptance as solid-state lighting sources.
Patent

Organic light-emitting device

TL;DR: In this paper, the authors presented a heterocyclic compound and an organic light-emitting device including the HOC compound, which have high efficiency, low driving voltage, high luminance and long lifespan.
Journal ArticleDOI

Recent Progresses on Materials for Electrophosphorescent Organic Light-Emitting Devices

TL;DR: Blue phosphorescence approaching the theoretical efficiency has also been achieved, which may overcome the final obstacle against the commercialization of full color display and white light sources from phosphorescent materials.
Journal ArticleDOI

Transition-metal phosphors with cyclometalating ligands: fundamentals and applications

TL;DR: Various types of cyclometalating chelates for which the favorable metal-chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature, are reviewed.
References
More filters
Journal ArticleDOI

Highly efficient phosphorescent emission from organic electroluminescent devices

TL;DR: In this article, a host material doped with the phosphorescent dye PtOEP (PtOEP II) was used to achieve high energy transfer from both singlet and triplet states.
Journal ArticleDOI

Very high-efficiency green organic light-emitting devices based on electrophosphorescence

TL;DR: In this paper, the performance of an organic light-emitting device employing the green electrophosphorescent material, fac tris(2-phenylpyridine) iridium [Ir(ppy)3] doped into a 4,4′-N,N′-dicarbazole-biphenyl host was described.
Journal ArticleDOI

Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes.

TL;DR: The synthesis and photophysical study of a family of cyclometalated iridium(III) complexes are reported, and three of the C(**)N2Ir(acac) complexes were used as dopants for organic light emitting diodes (OLEDs) and show some of the highest efficiencies reported for organic Light Emitting Diodes.
Related Papers (5)