scispace - formally typeset
Search or ask a question
Author

Jie Zeng

Bio: Jie Zeng is an academic researcher from Tsinghua University. The author has contributed to research in topics: Telecommunications link & Spectral efficiency. The author has an hindex of 15, co-authored 119 publications receiving 943 citations. Previous affiliations of Jie Zeng include Chongqing University of Posts and Telecommunications & Beijing University of Posts and Telecommunications.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency and identifies that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in theUnlicensed band.
Abstract: Future 5th generation networks are expected to enable three key services—enhanced mobile broadband, massive machine type communications and ultra-reliable and low latency communications (URLLC). As per the 3rd generation partnership project URLLC requirements, it is expected that the reliability of one transmission of a 32 byte packet will be at least 99.999% and the latency will be at most 1 ms. This unprecedented level of reliability and latency will yield various new applications, such as smart grids, industrial automation and intelligent transport systems. In this survey we present potential future URLLC applications, and summarize the corresponding reliability and latency requirements. We provide a comprehensive discussion on physical (PHY) and medium access control (MAC) layer techniques that enable URLLC, addressing both licensed and unlicensed bands. This paper evaluates the relevant PHY and MAC techniques for their ability to improve the reliability and reduce the latency. We identify that enabling long-term evolution to coexist in the unlicensed spectrum is also a potential enabler of URLLC in the unlicensed band, and provide numerical evaluations. Lastly, this paper discusses the potential future research directions and challenges in achieving the URLLC requirements.

185 citations

Journal ArticleDOI
TL;DR: In this paper, a new mmWave-NOMA transmission scheme for cellular machine-to-machine (M2M) communication systems for IoT applications is introduced, which is based upon the distance between the BS and the MTC devices aiming at reducing the system overall overhead for massive connectivity and latency.
Abstract: Massive connectivity and low latency are two important challenges for the Internet of Things (IoT) to achieve the quality of service provisions required by the numerous devices it is designed to service. Motivated by these challenges, in this paper we introduce a new millimeter-wave nonorthogonal multiple access (mmWave-NOMA) transmission scheme designed for cellular machine-to-machine (M2M) communication systems for IoT applications. It consists of one base station (BS) and numerous multiple machine type communication (MTC) devices operating in a cellular communication environment. We consider its down-link performance and assume that multiple MTC devices share the same communication resources offered by the proposed mmWave-NOMA transmission scheme, which can support massive connectivity. For this system, a novel MTC pairing scheme is introduced the design of which is based upon the distance between the BS and the MTC devices aiming at reducing the system overall overhead for massive connectivity and latency. In particular, we consider three different MTC device pairing schemes, namely: 1) random near and the random far MTC devices; 2) nearest near and the nearest far MTC devices (NNNF); and 3) nearest near and the farthest far MTC device. For all three pairing schemes, their performance is analyzed by deriving closed-form expressions of the outage probability and the sum rate. Furthermore, performance comparison studies of the three MTC device pairing schemes have been carried out. The validity of the analytical approach has been verified by means of extensive computer simulations. The obtained performance evaluation results have demonstrated that the proposed cellular M2M communication system employing the mmWave-NOMA transmission scheme improves outage probability as compared to equivalent systems using mmWave with orthogonal multiple access schemes.

106 citations

Journal ArticleDOI
TL;DR: This paper reveals that the NOMA techniques have evolved from single-carrier NomA (SC-NOMA) into multi- carrier NOMa (MC-N OMA), and comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NomA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access(PDMA).
Abstract: Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA.

104 citations

Journal ArticleDOI
TL;DR: Numerical results verify that massive MU-MIMO can support a large number of UL URLLC users even when users are randomly deployed under shadow fading, and finite blocklength (FBL) information theory is utilized to derive the error probability of accessing users with a given latency.
Abstract: It is challenging to satisfy the critical requirements of ultrareliable and low-latency communications (URLLCs) in the Internet of Things (IoT) under severe channel fading. The emerging massive multiuser multiple-input–multiple-output (MU-MIMO) concept is applied in IoT networks under shadow fading, enabling URLLC with pilot-assisted channel estimation (PACE) and zero-forcing (ZF) detection. Assuming users are uniformly and randomly deployed under log-normal shadow fading, the probability density function (pdf) of postprocessing signal-to-noise ratios (SNRs) is derived for the uplink (UL) of massive MU-MIMO with perfect channel state information (CSI) and imperfect CSI obtained by PACE. Then, finite blocklength (FBL) information theory is utilized to derive the error probability of accessing users with a given latency, thereby evaluating the reliability of massive MU-MIMO for short-packet transmissions. Further, the length of pilots to minimize the error probability can be decided by the golden section search method (GSSM), which can converge rapidly. Numerical results verify that massive MU-MIMO can support a large number of UL URLLC users even when users are randomly deployed under shadow fading.

70 citations

Journal ArticleDOI
TL;DR: A closed-form upper bound for the delay target violation probability in the downlink MIMO-NOMA is derived by applying stochastic network calculus to the Mellin transforms of service processes and it is proved that the infinite-length Mellin transform resulting from the non-negligible interferences of NOMA are Cauchy convergent and can be asymptotically approached by a finite truncated binomial series in the closed form.
Abstract: With the emergence of the mission-critical Internet of Things applications, ultra-reliable low-latency communications are attracting a lot of attentions. Non-orthogonal multiple access (NOMA) with multiple-input multiple-output (MIMO) is one of the promising candidates to enhance connectivity, reliability, and latency performance of the emerging applications. In this paper, we derive a closed-form upper bound for the delay target violation probability in the downlink MIMO-NOMA, by applying stochastic network calculus to the Mellin transforms of service processes. A key contribution is that we prove that the infinite-length Mellin transforms resulting from the non-negligible interferences of NOMA are Cauchy convergent and can be asymptotically approached by a finite truncated binomial series in the closed form. By exploiting the asymptotically accurate truncated binomial series, another important contribution is that we identify the critical condition for the optimal power allocation of MIMO-NOMA to achieve consistent latency and reliability between the receivers. The condition is employed to minimize the total transmit power, given a latency and reliability requirement of the receivers. It is also used to prove that the minimal total transmit power needs to change linearly with the path losses, to maintain latency and reliability at the receivers. This enables the power allocation for mobile MIMO-NOMA receivers to be effectively tracked. The extensive simulations corroborate the accuracy and effectiveness of the proposed model and the identified critical condition.

64 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This survey makes an exhaustive review of wireless evolution toward 5G networks, including the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN, and underlying novel mm-wave physical layer technologies.
Abstract: The vision of next generation 5G wireless communications lies in providing very high data rates (typically of Gbps order), extremely low latency, manifold increase in base station capacity, and significant improvement in users’ perceived quality of service (QoS), compared to current 4G LTE networks. Ever increasing proliferation of smart devices, introduction of new emerging multimedia applications, together with an exponential rise in wireless data (multimedia) demand and usage is already creating a significant burden on existing cellular networks. 5G wireless systems, with improved data rates, capacity, latency, and QoS are expected to be the panacea of most of the current cellular networks’ problems. In this survey, we make an exhaustive review of wireless evolution toward 5G networks. We first discuss the new architectural changes associated with the radio access network (RAN) design, including air interfaces, smart antennas, cloud and heterogeneous RAN. Subsequently, we make an in-depth survey of underlying novel mm-wave physical layer technologies, encompassing new channel model estimation, directional antenna design, beamforming algorithms, and massive MIMO technologies. Next, the details of MAC layer protocols and multiplexing schemes needed to efficiently support this new physical layer are discussed. We also look into the killer applications, considered as the major driving force behind 5G. In order to understand the improved user experience, we provide highlights of new QoS, QoE, and SON features associated with the 5G evolution. For alleviating the increased network energy consumption and operating expenditure, we make a detail review on energy awareness and cost efficiency. As understanding the current status of 5G implementation is important for its eventual commercialization, we also discuss relevant field trials, drive tests, and simulation experiments. Finally, we point out major existing research issues and identify possible future research directions.

2,624 citations

Journal ArticleDOI
TL;DR: An overview of 5G research, standardization trials, and deployment challenges is provided, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.
Abstract: There is considerable pressure to define the key requirements of 5G, develop 5G standards, and perform technology trials as quickly as possible. Normally, these activities are best done in series but there is a desire to complete these tasks in parallel so that commercial deployments of 5G can begin by 2020. 5G will not be an incremental improvement over its predecessors; it aims to be a revolutionary leap forward in terms of data rates, latency, massive connectivity, network reliability, and energy efficiency. These capabilities are targeted at realizing high-speed connectivity, the Internet of Things, augmented virtual reality, the tactile internet, and so on. The requirements of 5G are expected to be met by new spectrum in the microwave bands (3.3-4.2 GHz), and utilizing large bandwidths available in mm-wave bands, increasing spatial degrees of freedom via large antenna arrays and 3-D MIMO, network densification, and new waveforms that provide scalability and flexibility to meet the varying demands of 5G services. Unlike the one size fits all 4G core networks, the 5G core network must be flexible and adaptable and is expected to simultaneously provide optimized support for the diverse 5G use case categories. In this paper, we provide an overview of 5G research, standardization trials, and deployment challenges. Due to the enormous scope of 5G systems, it is necessary to provide some direction in a tutorial article, and in this overview, the focus is largely user centric, rather than device centric. In addition to surveying the state of play in the area, we identify leading technologies, evaluating their strengths and weaknesses, and outline the key challenges ahead, with research test beds delivering promising performance but pre-commercial trials lagging behind the desired 5G targets.

1,659 citations

Book Chapter
01 Jan 2017
TL;DR: Considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic and the proposed system should be able to support enhanced delay-sensitive high-volume services.
Abstract: Radio access technologies for cellular mobile communications are typically characterized by multiple access schemes, e.g., frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and OFDMA. In the 4th generation (4G) mobile communication systems such as Long-Term Evolution (LTE) (Au et al., Uplink contention based SCMA for 5G radio access. Globecom Workshops (GC Wkshps), 2014. doi:10.1109/GLOCOMW.2014.7063547) and LTE-Advanced (Baracca et al., IEEE Trans. Commun., 2011. doi:10.1109/TCOMM.2011.121410.090252; Barry et al., Digital Communication, Kluwer, Dordrecht, 2004), standardized by the 3rd Generation Partnership Project (3GPP), orthogonal multiple access based on OFDMA or single carrier (SC)-FDMA is adopted. Orthogonal multiple access was a reasonable choice for achieving good system-level throughput performance with simple single-user detection. However, considering the trend in 5G, achieving significant gains in capacity and system throughput performance is a high priority requirement in view of the recent exponential increase in the volume of mobile traffic. In addition the proposed system should be able to support enhanced delay-sensitive high-volume services such as video streaming and cloud computing. Another high-level target of 5G is reduced cost, higher energy efficiency and robustness against emergencies.

635 citations

Journal ArticleDOI
TL;DR: In this paper, a comprehensive overview of the most promising modulation and multiple access (MA) schemes for 5G networks is presented, including modulation techniques in orthogonal MA (OMA) and various types of non-OMA (NOMA).
Abstract: Fifth generation (5G) wireless networks face various challenges in order to support large-scale heterogeneous traffic and users, therefore new modulation and multiple access (MA) schemes are being developed to meet the changing demands. As this research space is ever increasing, it becomes more important to analyze the various approaches, therefore, in this paper we present a comprehensive overview of the most promising modulation and MA schemes for 5G networks. Unlike other surreys of 5G networks, this paper focuses on multiplexing techniques, including modulation techniques in orthogonal MA (OMA) and various types of non-OMA (NOMA) techniques. Specifically, we first introduce different types of modulation schemes, potential for OMA, and compare their performance in terms of spectral efficiency, out-of-band leakage, and bit-error rate. We then pay close attention to various types of NOMA candidates, including power-domain NOMA, code-domain NOMA, and NOMA multiplexing in multiple domains. From this exploration, we can identify the opportunities and challenges that will have the most significant impacts on modulation and MA designs for 5G networks.

371 citations

Journal Article
TL;DR: In this article, the optimal number of scheduled users in a massive MIMO system with arbitrary pilot reuse and random user locations is analyzed in a closed form, while simulations are used to show what happens at finite $M$, in different interference scenarios, with different pilot reuse factors, and for different processing schemes.
Abstract: Massive MIMO is a promising technique for increasing the spectral efficiency (SE) of cellular networks, by deploying antenna arrays with hundreds or thousands of active elements at the base stations and performing coherent transceiver processing. A common rule-of-thumb is that these systems should have an order of magnitude more antennas $M$ than scheduled users $K$ because the users’ channels are likely to be near-orthogonal when $M/K > 10$ . However, it has not been proved that this rule-of-thumb actually maximizes the SE. In this paper, we analyze how the optimal number of scheduled users $K^\star$ depends on $M$ and other system parameters. To this end, new SE expressions are derived to enable efficient system-level analysis with power control, arbitrary pilot reuse, and random user locations. The value of $K^\star$ in the large- $M$ regime is derived in closed form, while simulations are used to show what happens at finite $M$ , in different interference scenarios, with different pilot reuse factors, and for different processing schemes. Up to half the coherence block should be dedicated to pilots and the optimal $M/K$ is less than 10 in many cases of practical relevance. Interestingly, $K^\star$ depends strongly on the processing scheme and hence it is unfair to compare different schemes using the same $K$ .

363 citations