scispace - formally typeset
Search or ask a question

Showing papers by "Louis J. Ignarro published in 2012"


Journal ArticleDOI
TL;DR: A fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility and attempts to establish the chemical basis for their signaling functions.
Abstract: Several small molecule species formally known primarily as toxic gases have, over the past 20 years, been shown to be endogenously generated signaling molecules. The biological signaling associated with the small molecules NO, CO, H₂S (and the nonendogenously generated O₂), and their derived species have become a topic of extreme interest. It has become increasingly clear that these small molecule signaling agents form an integrated signaling web that affects/regulates numerous physiological processes. The chemical interactions between these species and each other or biological targets is an important factor in their roles as signaling agents. Thus, a fundamental understanding of the chemistry of these molecules is essential to understanding their biological/physiological utility. This review focuses on this chemistry and attempts to establish the chemical basis for their signaling functions.

323 citations


Journal ArticleDOI
TL;DR: Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient satisfaction.
Abstract: Oxidative stress and inflammation, which disrupt nitric oxide (NO) production directly or by causing resistance to insulin, are central determinants of vascular diseases including ED. Decreased vascular NO has been linked to abdominal obesity, smoking and high intakes of fat and sugar, which all cause oxidative stress. Men with ED have decreased vascular NO and circulating and cellular antioxidants. Oxidative stress and inflammatory markers are increased in men with ED, and all increase with age. Exercise increases vascular NO, and more frequent erections are correlated with decreased ED, both in part due to stimulation of endothelial NO production by shear stress. Exercise and weight loss increase insulin sensitivity and endothelial NO production. Potent antioxidants or high doses of weaker antioxidants increase vascular NO and improve vascular and erectile function. Antioxidants may be particularly important in men with ED who smoke, are obese or have diabetes. Omega-3 fatty acids reduce inflammatory markers, decrease cardiac death and increase endothelial NO production, and are therefore critical for men with ED who are under age 60 years, and/or have diabetes, hypertension or coronary artery disease, who are at increased risk of serious or even fatal cardiac events. Phosphodiesterase inhibitors have recently been shown to improve antioxidant status and NO production and allow more frequent and sustained penile exercise. Some angiotensin II receptor blockers decrease oxidative stress and improve vascular and erectile function and are therefore preferred choices for lowering blood pressure in men with ED. Lifestyle modifications, including physical and penile-specific exercise, weight loss, omega-3 and folic acid supplements, reduced intakes of fat and sugar, and improved antioxidant status through diet and/or supplements should be integrated into any comprehensive approach to maximizing erectile function, resulting in greater overall success and patient satisfaction, as well as improved vascular health and longevity.

56 citations


Journal ArticleDOI
TL;DR: It is demonstrated that seeding syngeneic ADSCs onto SIS grafts (SIS-ADSC) resulted in significant cavernosal tissue preservation and maintained erectile responses, similar to controls, in a rat model of bilateral incision of TA, compared with sham-operated animals and rats grafted with Sis graft (Sis) alone.
Abstract: Porcine small intestinal submucosa (SIS) has been widely used in tunica albuginea (TA) reconstructive surgery. Adipose tissue-derived stem cells (ADSCs) can repair damaged tissue, augment cellular differentiation, and stimulate release of multiple growth factors. The aim of this rat study was to assess the feasibility of seeding ADSCs onto SIS grafts for TA reconstruction. Here, we demonstrate that seeding syngeneic ADSCs onto SIS grafts (SIS-ADSC) resulted in significant cavernosal tissue preservation and maintained erectile responses, similar to controls, in a rat model of bilateral incision of TA, compared with sham-operated animals and rats grafted with SIS graft (SIS) alone. In addition to increased TGF-β1 and FGF-2 expression levels, cross-sectional studies of the rat penis with SIS and SIS-ADSC revealed mild to moderate fibrosis and an increase of 30% and 40% in mean diameter in flaccid and erectile states, respectively. SIS grafting induced transcriptional up-regulation of iNOS and down-regulation of endothelial NOS, neuronal NOS, and VEGF, an effect that was restored by seeding ADCSs on the SIS graft. Taken together, these data show that rats undergoing TA incision with autologous SIS-ADSC grafts maintained better erectile function compared with animals grafted with SIS alone. This study suggests that SIS-ADSC grafting can be successfully used for TA reconstruction procedures and can restore erectile function.

54 citations


Journal ArticleDOI
TL;DR: Evidence is provided that heme oxygenase‐1 (HO‐1) activity protects cells against ER stress in a protein kinase RNA‐like endoplasmic reticulum kinase (PERK)‐dependent pathway and that PERK‐mediated induction of HO‐1 in murine macrophages, RAW264.7, relays ER stress to mitochondrial DNA (mtDNA) replication and function.
Abstract: Endoplasmic reticulum (ER) stress activates the adaptive unfolded protein response, allowing cells to recover folding capacity in the organelle However, the overwhelming response to severe damage results in apoptotic cell death Because of the physical proximity between ER and mitochondria, a functional interrelationship between these two organelles, including mitochondrial ATP production and apoptosis, has been suggested The adaptive response to ER stress includes the maintenance of cellular energetics, which eventually determines cell fate We previously demonstrated that heme oxygenase-1 (HO-1) activity protects cells against ER stress in a protein kinase RNA-like endoplasmic reticulum kinase (PERK)-dependent pathway Here, we provide evidence that PERK-mediated induction of HO-1 in murine macrophages, RAW2647, relays ER stress to mitochondrial DNA (mtDNA) replication and function ER stress induced by thapsigargin treatments (10-100 nM) resulted in a 2-fold increase in mtDNA contents compared with that in the untreated control HO-1 activity on ER stress is proven to be critical for mitochondrial integrity because chemical inhibition (zinc protoporphyrin, 5-20 μM) and genetic depletion of HO-1 by small interference RNA transfection suppress the activation of transcription factors for mitochondrial biogenesis Carbon monoxide (CO), an enzymatic by-product of HO-1 activity is responsible for the function of HO-1 Limited bioavailability of CO by hemoglobin treatment triggers cell death with a concomitant decline in ATP production Approximately 781% of RAW2647 cells were damaged in the presence of hemoglobin compared with the percentage of injured cells (269%) under ER stress alone Mitochondrial generation of ATP levels significantly declined when CO availability was limited under prolonged ER stress Taken together, these results suggest that the cellular HO-1/CO system conveys ER stress to cell survival signals from mitochondria via both the activation of transcriptional factors and functional integrity of mtDNA

39 citations


Journal ArticleDOI
TL;DR: It is concluded that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.
Abstract: Human adipose-derived stem cells hASC have been isolated and were shown to have multilineage differentiation capacity. Although both plasticity and cell fusion have been suggested as mechanisms for cell differentiation in vivo, the effect of the local in vivo environment on the differentiation of adipose-derived stem cells has not been evaluated. We previously reported the in vitro capacity of smooth muscle differentiation of these cells. In this study, we evaluate the effect of an in vivo smooth muscle environment in the differentiation of hASC. We studied this by two experimental designs: (a) in vivo evaluation of smooth muscle differentiation of hASC injected into a smooth muscle environment and (b) in vitro evaluation of smooth muscle differentiation capacity of hASC exposed to bladder smooth muscle cells. Our results indicate a time-dependent differentiation of hASC into mature smooth muscle cells when these cells are injected into the smooth musculature of the urinary bladder. Similar findings were seen when the cells were cocultured in vitro with primary bladder smooth muscle cells. Chromosomal analysis demonstrated that microenvironment cues rather than nuclear fusion are responsible for this differentiation. We conclude that cell plasticity is present in hASCs, and their differentiation is accomplished in the absence of nuclear fusion.

26 citations


Journal ArticleDOI
TL;DR: First line of evidence is provided that MAPK‐ERK/JNK pathways are involved in vascular damage induced by glycoxidation, and the role of MKK4 and JNK were investigated in vivo, using apolipoprotein E knockout mice.
Abstract: Oxidation and glycation enhance foam cell formation via MAPK/JNK in euglycemic and diabetic subjects. Here, we investigated the effects of glycated and oxidized LDL (glc-oxLDL) on MAPK-ERK and JNK signaling pathways using human coronary smooth muscle cells. Glc-oxLDL induced a broad cascade of MAPK/JNK-dependent signaling transduction pathways and the AP-1 complex. In glc-oxLDL treated coronary arterioles, tumor necrosis factor (TNF) α increased JNK phosphorylation, whereas protein kinase inhibitor dimethylaminopurine (DMAP) prevented the TNF-induced increase in JNK phosphorylation. The role of MKK4 and JNK were then investigated in vivo, using apolipoprotein E knockout (ApoE−/−) mice. Peritoneal macrophages, isolated from spontaneously hyperlipidemic but euglycemic mice showed increases in both proteins and phosphorylated proteins. Compared to streptozotocin-treated diabetic C57BL6 and nondiabetic C57BL6 Wt mice, in streptozotocin-diabetic ApoE−/− mice, the increment of foam cell formation corresponded to an increment of phosphorylation of JNK1, JNK2, and MMK4. Thus, we provide a first line of evidence that MAPK-ERK/JNK pathways are involved in vascular damage induced by glycoxidation. J. Cell. Physiol. 227: 3639–3647, 2012. © 2012 Wiley Periodicals, Inc.

6 citations


Journal ArticleDOI
19 Nov 2012
TL;DR: A lot of translational studies support the hypothesis that epigenetic changes are related to increased CVD risk although it is still not possible to establish a direct causality in humans.
Abstract: A great deal of evidences indicate that impaired fetal growth and in utero exposure to risk factors, especially maternal hypercholesterolemia, may be relevant for human pathophysiological signs of atherosclerosis and subsequent development of cardiovascular disease (CVD) during different life stages. Despite the underlying mechanisms of fetal programming are still unknown, epigenetics has been suggested as one of the possible explanations for the associations between intrauterine risk factors and CVD development. Indeed, a lot of translational studies support the hypothesis that epigenetic changes are related to increased CVD risk although it is still not possible to establish a direct causality in humans. Notably, epigenetic modifications can be reversible through therapeutic approaches employing histone deacetylase inhibitors, histone acetyltransferase inhibitors and commonly used drugs like statins. Thus, the whole comprehension of these mechanisms will provide in the next future the rationale for the development of novel tools to be used in the primary prevention and therapy of CVD.

3 citations