scispace - formally typeset
Search or ask a question

Showing papers by "Matilde Todaro published in 2015"


Journal ArticleDOI
05 Feb 2015-Oncogene
TL;DR: This study designs TAZ as a novel biomarker and a possible therapeutic target for BC and finds that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs).
Abstract: Metastatic growth in breast cancer (BC) has been proposed as an exclusive property of cancer stem cells (CSCs). However, formal proof of their identity as cells of origin of recurrences at distant sites and the molecular events that may contribute to tumor cell dissemination and metastasis development are yet to be elucidated. In this study, we analyzed a set of patient-derived breast cancer stem cell (BCSC) lines. We found that in vitro BCSCs exhibit a higher chemoresistance and migratory potential when compared with differentiated, nontumorigenic, breast cancer cells (dBCCs). By developing an in vivo metastatic model simulating the disease of patients with early BC, we observed that BCSCs is the only cell population endowed with metastatic potential. Gene-expression profile studies comparing metastagenic and non-metastagenic cells identified TAZ, a transducer of the Hippo pathway and biomechanical cues, as a central mediator of BCSCs metastatic ability involved in their chemoresistance and tumorigenic potential. Overexpression of TAZ in low-expressing dBCCs induced cell transformation and conferred tumorigenicity and migratory activity. Conversely, loss of TAZ in BCSCs severely impaired metastatic colonization and chemoresistance. In clinical data from 99 BC patients, high expression levels of TAZ were associated with shorter disease-free survival in multivariate analysis, thus indicating that TAZ may represent a novel independent negative prognostic factor. Overall, this study designates TAZ as a novel biomarker and a possible therapeutic target for BC.

273 citations


Journal ArticleDOI
TL;DR: It is shown that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer, and this increased lipid content was clearly revealed by label‐free Raman spectroscopy and it directly correlates with well‐accepted CR‐CSC markers as CD133 and Wnt pathway activity.
Abstract: The cancer stem cell (CSC) model is describing tumors as a hierarchical organized system and CSCs are suggested to be responsible for cancer recurrence after therapy. The identification of specific markers of CSCs is therefore of paramount importance. Here, we show that high levels of lipid droplets (LDs) are a distinctive mark of CSCs in colorectal (CR) cancer. This increased lipid content was clearly revealed by label-free Raman spectroscopy and it directly correlates with well-accepted CR-CSC markers as CD133 and Wnt pathway activity. By xenotransplantation experiments, we have finally demonstrated that CR-CSCs overexpressing LDs retain most tumorigenic potential. A relevant conceptual advance in this work is the demonstration that a cellular organelle, the LD, is a signature of CSCs, in addition to molecular markers. A further functional characterization of LDs could lead soon to design new target therapies against CR-CSCs. Stem Cells 2015;33:35–44

182 citations


Journal ArticleDOI
TL;DR: It is reported that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy and it is shown that p63 directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR/p63/EGFR regulation.
Abstract: The ErbB tyrosine kinase receptor family has been shown to have an important role in tumorigenesis, and the expression of its receptor members is frequently deregulated in many types of solid tumors. Various drugs targeting these receptors have been approved for cancer treatment. Particularly, in breast cancer, anti-Her2/EGFR molecules represent the standard therapy for Her2-positive malignancies. However, in a number of cases, the tumor relapses or progresses thus suggesting that not all cancer cells have been targeted. One possibility is that a subset of cells capable of regenerating the tumor, such as cancer stem cells (CSCs), may not respond to these therapeutic agents. Accumulating evidences indicate that miR-205-5p is significantly downregulated in breast tumors compared with normal breast tissue and acts as a tumor suppressor directly targeting oncogenes such as Zeb1 and ErbB3. In this study, we report that miR-205-5p is highly expressed in BCSCs and represses directly ERBB2 and indirectly EGFR leading to resistance to targeted therapy. Furthermore, we show that miR-205-5p directly regulates the expression of p63 which is in turn involved in the EGFR expression suggesting a miR-205/p63/EGFR regulation.

72 citations


Journal ArticleDOI
TL;DR: Results point to CR1 as a novel and dynamically regulated effector of stem cell functions in colorectal cancer.
Abstract: Stemness was recently depicted as a dynamic condition in normal and tumor cells. We found that the embryonic protein Cripto-1 (CR1) was expressed by normal stem cells at the bottom of colonic crypts and by cancer stem cells (CSCs) in colorectal tumor tissues. CR1-positive populations isolated from patient-derived tumor spheroids exhibited increased clonogenic capacity and expression of stem-cell-related genes. CR1 expression in tumor spheroids was variable over time, being subject to a complex regulation of the intracellular, surface and secreted protein, which was related to changes of the clonogenic capacity at the population level. CR1 silencing induced CSC growth arrest in vitro with a concomitant decrease of Src/Akt signaling, while in vivo it inhibited the growth of CSC-derived tumor xenografts and reduced CSC numbers. Importantly, CR1 silencing in established xenografts through an inducible expression system decreased CSC growth in both primary and metastatic tumors, indicating an essential role of CR1 in the regulation the CSC compartment. These results point to CR1 as a novel and dynamically regulated effector of stem cell functions in colorectal cancer.

51 citations


Journal ArticleDOI
TL;DR: It is shown that miR-100 inhibits maintenance and expansion of BrCSCs in basal-like cancer through Polo-like kinase1 (Plk1) down-regulation, indicating a new possible therapeutic strategy, which could make aggressive breast cancers responsive to standard treatments.
Abstract: // Annalisa Petrelli 1,* , Rosachiara Carollo 2,* , Marilisa Cargnelutti 1 , Flora Iovino 2 , Maurizio Callari 3 , Daniela Cimino 4 , Matilde Todaro 2 , Laura Rosa Mangiapane 2 , Alessandro Giammona 2 , Adriana Cordova 2 , Filippo Montemurro 1 , Daniela Taverna 4 , Maria Grazia Daidone 3 , Giorgio Stassi 2,* and Silvia Giordano 1,* 1 University of Torino School of Medicine, Candiolo Cancer Institute-FPO, IRCCS, Str. Provinciale, Candiolo, Torino, Italy 2 Department of Surgical and Oncological Sciences, Cellular and Molecular Pathophysiology Laboratory, University of Palermo, Palermo, Italy 3 Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy 4 Molecular Biotechnology Center (MBC), Department of Oncological Sciences, Center for Molecular Systems Biology, Via Nizza, University of Torino, Torino, Italy * These authors contributed equally to this work Correspondence: Silvia Giordano, email: // Giorgio Stassi, email: // Annalisa Petrelli, email: // Keywords : Breast cancer, basal-like, differentiation, miR-100 Received : September 30, 2014 Accepted : December 10, 2014 Published : December 11, 2014 Abstract Basal-like breast cancer is an aggressive tumor subtype with a poor response to conventional therapies. Tumor formation and relapse are sustained by a cell subset of Breast Cancer Stem Cells (BrCSCs). Here we show that miR-100 inhibits maintenance and expansion of BrCSCs in basal-like cancer through Polo-like kinase1 (Plk1) down-regulation. Moreover, miR-100 favors BrCSC differentiation, converting a basal like phenotype into luminal. It induces the expression of a functional estrogen receptor (ER) and renders basal-like BrCSCs responsive to hormonal therapy. The key role played by miR-100 in breast cancer free-survival is confirmed by the analysis of a cohort of patients’ tumors, which shows that low expression of miR-100 is a negative prognostic factor and is associated with gene signatures of high grade undifferentiated tumors. Our findings indicate a new possible therapeutic strategy, which could make aggressive breast cancers responsive to standard treatments.

41 citations


Journal ArticleDOI
28 Apr 2015-PLOS ONE
TL;DR: Data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis and targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angelic effect.
Abstract: Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

19 citations


Journal ArticleDOI
08 May 2015-PLOS ONE
TL;DR: The approach used for the STELLA trial allowed isolation of cancer stem cells in a consistent proportion of patients and the low percentage of cases completing the full procedure and the long median time for obtaining results highlights the need for a more efficient procedure.
Abstract: Background Cancer stem cells represent a population of immature tumor cells found in most solid tumors. Their peculiar features make them ideal models for studying drug resistance and sensitivity. In this study, we investigated whether cancer stem cells isolation and in vitro sensitivity assay are feasible in a clinical setting.

15 citations


Book ChapterDOI
01 Jan 2015
TL;DR: The present chapter discusses the latest findings in the optimization and tailoring of novel strategies that target both CSCs and tumor bulk for the eradication of malignancies.
Abstract: Compelling evidence indicates that the survival and behavior of cancer stem cells (CSCs) are positively regulated by specific stimuli received from the tumor microenvironment, which dictates the maintenance of stemness, invasiveness, and protection against drug-induced apoptotic signals. CSCs are per se endowed with multiple treatment resistance capabilities, thus the eradication of CSC pools offers a precious strategy in achieving a long-term cancer remission. Numerous therapies, aimed at eradicating CSCs, have been elaborated such as: (i) selective targeting of CSCs, (ii) modulating their stemness and (iii) influencing the microenvironment. In this context, markers commonly exploited to isolate and identify CSCs are optimal targets for monoclonal antibody-based drugs. Furthermore, the molecules that inhibit detoxifying enzymes and drug-efflux pumps, are able to selectively suppress CSCs. Auspicious outcomes have also been reported either by targeting pathways selectively operating in CSCs (e.g. Hedgehog, Wnt, Notch and FAK) or by using specific CSC cytotoxic agents. Other compounds are able to attenuate the unique stemness properties of CSCs by forcing cell differentiation, and this being the case in ATRA, HDACi, BMPs and Cyclopamine, among others. Targeting the interplay between paracrine signals arising in the tumor stroma and the nearby cancerous cells via the inhibition of VEGF, HIF, CD44v and CXCR4, is increasingly recognized as a significant factor in cancer treatment response and holds alluring prospects for a successful elimination of CSCs. In the present chapter, we discuss the latest findings in the optimization and tailoring of novel strategies that target both CSCs and tumor bulk for the eradication of malignancies.

1 citations