scispace - formally typeset
Search or ask a question

Showing papers by "Paul Coucke published in 2019"


Journal ArticleDOI
TL;DR: The first homozygous pathogenic missense variant is identified in a patient with lethal OI, which is located within the highly conserved basic leucine zipper domain, four amino acids upstream of the DNA binding domain, and affects a critical residue in this functional domain, thereby decreasing the type I collagen transcriptional binding ability.
Abstract: The cyclic adenosine monophosphate responsive element binding protein 3-like 1 (CREB3L1) gene codes for the endoplasmic reticulum stress transducer old astrocyte specifically induced substance (OASIS), which has an important role in osteoblast differentiation during bone development. Deficiency of OASIS is linked to a severe form of autosomal recessive osteogenesis imperfecta (OI), but only few patients have been reported. We identified the first homozygous pathogenic missense variant [p.(Ala304Val)] in a patient with lethal OI, which is located within the highly conserved basic leucine zipper domain, four amino acids upstream of the DNA binding domain. In vitro structural modeling and luciferase assays demonstrate that this missense variant affects a critical residue in this functional domain, thereby decreasing the type I collagen transcriptional binding ability. In addition, overexpression of the mutant OASIS protein leads to decreased transcription of the SEC23A and SEC24D genes, which code for components of the coat protein complex type II (COPII), and aberrant OASIS signaling also results in decreased protein levels of SEC24D. Our findings therefore provide additional proof of the potential involvement of the COPII secretory complex in the context of bone-associated disease.

21 citations


Journal ArticleDOI
TL;DR: The altered DNA hydroxymethylation patterns in patient cells both at the global level and at specific gene regions accompanied with decreased nuclear accumulation of ascorbate suggests the epigenetic role of vitamin C in the pathomechanism of ATS.
Abstract: Ascorbate requiring Fe2+/2-oxoglutarate-dependent dioxygenases located in the nucleoplasm have been shown to participate in epigenetic regulation of gene expression via histone and DNA demethylation. Transport of dehydroascorbic acid is impaired in the endomembranes of fibroblasts from arterial tortuosity syndrome (ATS) patients, due to the mutation in the gene coding for glucose transporter GLUT10. We hypothesized that altered nuclear ascorbate concentration might be present in ATS fibroblasts, affecting dioxygenase activity and DNA demethylation. Therefore, our aim was to characterize the subcellular distribution of vitamin C, the global and site-specific changes in 5-methylcytosine and 5-hydroxymethylcytosine levels, and the effect of ascorbate supplementation in control and ATS fibroblast cultures. Diminished nuclear accumulation of ascorbate was found in ATS fibroblasts upon ascorbate or dehydroascorbic acid addition. Analyzing DNA samples of cultured fibroblasts from controls and ATS patients, a lower global 5-hydroxymethylcytosine level was found in ATS fibroblasts, which could not be significantly modified by ascorbate addition. Investigation of the (hydroxy)methylation status of specific regions in six candidate genes related to ascorbate metabolism and function showed that ascorbate addition could stimulate hydroxymethylation and active DNA demethylation at the PPAR-γ gene region in control fibroblasts only. The altered DNA hydroxymethylation patterns in patient cells both at the global level and at specific gene regions accompanied with decreased nuclear accumulation of ascorbate suggests the epigenetic role of vitamin C in the pathomechanism of ATS. The present findings represent the first example for the role of vitamin C transport in epigenetic regulation suggesting that ATS is a compartmentalization disease.

5 citations


Posted ContentDOI
02 Dec 2019-bioRxiv
TL;DR: Evidence is added that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.
Abstract: Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicate GLUT10 in transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations do not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in rodents. Gulo;Slc2a10 knock-out mice show mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 knock-out mice do not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. TGFβ signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined.

3 citations



Journal ArticleDOI
TL;DR: The enrichment method provided here, i.e., lysis with Buffer RLT followed by centrifugation, may contribute to increase the proportion of nucleic acids from fungi in clinical samples, thus promoting more comprehensive analysis of fungal transcriptional profiles, and may be applicable to other fungal pathogens.
Abstract: Fungal infections, ranging from superficial to life-threatening infections, represent a major public health problem that affects 25% of the worldwide population. In this context, the study of host-pathogen interactions within the host is crucial to advance antifungal therapy. However, since fungal cells are usually outnumbered by host cells, the fungal transcriptome frequently remains uncovered. We compared three different methods to selectively lyse human cells from in vitro mixes, composed of Candida cells and peripheral blood mononuclear cells. In order to prevent transcriptional modification, the mixes were stored in RNAlater. We evaluated the enrichment of fungal cells through cell counting using microscopy and aimed to further enrich fungal nucleic acids by centrifugation and by reducing contaminant nucleic acids from the host. We verified the enrichment of fungal DNA and RNA through qPCR and RT-qPCR respectively and confirmed that the resulting RNA has high integrity scores, suitable for downstream applications. The enrichment method provided here, i.e., lysis with Buffer RLT followed by centrifugation, may contribute to increase the proportion of nucleic acids from fungi in clinical samples, thus promoting more comprehensive analysis of fungal transcriptional profiles. Although we focused on C. albicans, the enrichment may be applicable to other fungal pathogens.

3 citations


Journal ArticleDOI
TL;DR: In the published version of this paper the author Neus Baena's name was incorrectly given as NeusBaena Diez, and this has now been corrected in both the HTML and PDF versions of the paper.

2 citations


Posted ContentDOI
02 May 2019-bioRxiv
TL;DR: These studies provide strategies for decoding spatially variable phenotypes which, paired with CRISPR-based screens, can identify genes contributing to skeletal disease and describe statistical frameworks for phenomic analysis which confers heightened sensitivity in discriminating somatic mutant populations.
Abstract: Genetic mosaicism manifests as spatially variable phenotypes, whose detection and interpretation remains challenging. This study identifies biological factors influencing spatial phenotypic patterns in the skeletons of somatic mutant zebrafish, and tests methods for their analysis using deep phenotyping. We explore characteristics of loss-of-function clusters in the skeleton of CRISPR-edited G0 ("crispant") zebrafish, and identify a distinctive size distribution shown to arise from clonal fragmentation and merger events. Using microCT-based phenomics, we describe diverse phenotypic manifestations in somatic mutants for genes implicated in monogenic (plod2 and bmp1a) and polygenic (wnt16) bone diseases, each showing convergence with germline mutant phenomes. Finally, we describe statistical frameworks for phenomic analysis which confers heightened sensitivity in discriminating somatic mutant populations, and quantifies spatial phenotypic variation. Our studies provide strategies for decoding spatially variable phenotypes which, paired with CRISPR-based screens, can identify genes contributing to skeletal disease.

2 citations


Journal Article
TL;DR: In this paper, the numerical score-based variant classification system Sherloc was used to classify 234 variants from in-house patient screening using a hierarchical decision tree (HBDT).
Abstract: literature and novel variants from in-house patient screenings. In total, 234 variants were analysed using the numerical score-based variant classification system Sherloc (Nykamp et al. 2017). Clinical and functional evidence were scored with benign (B) or pathogenic (P) points using hierarchical decision trees. Classification was based on the variant’s total score: benign (class 1), likely benign (class 2), variants of uncertain significance (VUS) (class 3), likely pathogenic (class 4) and pathogenic (class 5). To distinguish between different types of VUS we created additional subclasses: those that are truly uncertain (3 U) and those leaning towards likely benign (3 LB) or likely pathogenic (3 LP) (Fig 1a). Methodology

1 citations