scispace - formally typeset
S

Sacha B. Nelson

Researcher at Brandeis University

Publications -  140
Citations -  30371

Sacha B. Nelson is an academic researcher from Brandeis University. The author has contributed to research in topics: Visual cortex & Excitatory postsynaptic potential. The author has an hindex of 68, co-authored 134 publications receiving 27897 citations. Previous affiliations of Sacha B. Nelson include Salk Institute for Biological Studies & Center for Neural Science.

Papers
More filters
Journal ArticleDOI

Homeostatic plasticity in the developing nervous system

TL;DR: Evidence is discussed from a number of systems that homeostatic synaptic plasticity is crucial for processes ranging from memory storage to activity-dependent development, and how these processes maintain stable activity states in the face of destabilizing forces is discussed.
Journal ArticleDOI

Activity-dependent scaling of quantal amplitude in neocortical neurons

TL;DR: A new form of synaptic plasticity is described that increases or decreases the strength of all of a neuron's synaptic inputs as a function of activity, and may help to ensure that firing rates do not become saturated during developmental changes in the number and strength of synaptic inputs.
Journal ArticleDOI

Synaptic plasticity: taming the beast

TL;DR: This work reviews three Hebbian forms of plasticity—synaptic scaling, spike-timing dependent plasticity and synaptic redistribution—and discusses their functional implications.
Journal ArticleDOI

Synaptic depression and cortical gain control

TL;DR: Modeling work based on experimental measurements indicates that short-term depression of intracortical synapses provides a dynamic gain-control mechanism that allows equal percentage rate changes on rapidly and slowly firing afferents to produce equal postsynaptic responses.
Journal ArticleDOI

A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex

TL;DR: Using genetic engineering in mice, approximately 20 Cre and inducible CreER knockin driver lines that reliably target major classes and lineages of GABAergic neurons are generated, thereby enabling a systematic and comprehensive analysis from cell fate specification, migration, and connectivity, to their functions in network dynamics and behavior.