scispace - formally typeset
Search or ask a question

Showing papers by "Scott J. Hultgren published in 2010"


Journal ArticleDOI
TL;DR: It is discovered that introduction of uropathogenic E. coli into the bladders of C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women.
Abstract: Chronic infections are an increasing problem due to the aging population and the increase in antibiotic resistant organisms. Therefore, understanding the host-pathogen interactions that result in chronic infection is of great importance. Here, we investigate the molecular basis of chronic bacterial cystitis. We establish that introduction of uropathogenic E. coli (UPEC) into the bladders of C3H mice results in two distinct disease outcomes: resolution of acute infection or development of chronic cystitis lasting months. The incidence of chronic cystitis is both host strain and infectious dose-dependent. Further, development of chronic cystitis is preceded by biomarkers of local and systemic acute inflammation at 24 hours post-infection, including severe pyuria and bladder inflammation with mucosal injury, and a distinct serum cytokine signature consisting of elevated IL-5, IL-6, G-CSF, and the IL-8 analog KC. Mice deficient in TLR4 signaling or lymphocytes lack these innate responses and are resistant, to varying degrees, to developing chronic cystitis. Treatment of C3H mice with the glucocorticoid anti-inflammatory drug dexamethasone prior to UPEC infection also suppresses the development of chronic cystitis. Finally, individuals with a history of chronic cystitis, lasting at least 14 days, are significantly more susceptible to redeveloping severe, chronic cystitis upon bacterial challenge. Thus, we have discovered that the development of chronic cystitis in C3H mice by UPEC is facilitated by severe acute inflammatory responses early in infection, which subsequently are predisposing to recurrent cystitis, an insidious problem in women. Overall, these results have significant implications for our understanding of how early host-pathogen interactions at the mucosal surface determines the fate of disease.

229 citations


Journal ArticleDOI
TL;DR: Dimeric analogues linked through the biaryl ring show an impressive 8-fold increase in potency relative to monomeric matched pairs and represent the most potent FimH antagonists identified to date.
Abstract: FimH-mediated cellular adhesion to mannosylated proteins is critical in the ability of uropathogenic E. coli (UPEC) to colonize and invade the bladder epithelium during urinary tract infection. We describe the discovery and optimization of potent small-molecule FimH bacterial adhesion antagonists based on alpha-d-mannose 1-position anomeric glycosides using X-ray structure-guided drug design. Optimized biarylmannosides display low nanomolar binding affinity for FimH in a fluorescence polarization assay and submicromolar cellular activity in a hemagglutination (HA) functional cell assay of bacterial adhesion. X-ray crystallography demonstrates that the biphenyl moiety makes several key interactions with the outer surface of FimH including pi-pi interactions with Tyr-48 and an H-bonding electrostatic interaction with the Arg-98/Glu-50 salt bridge. Dimeric analogues linked through the biaryl ring show an impressive 8-fold increase in potency relative to monomeric matched pairs and represent the most potent FimH antagonists identified to date. The FimH antagonists described herein hold great potential for development as novel therapeutics for the effective treatment of urinary tract infections.

216 citations


Journal ArticleDOI
TL;DR: A review of the role of pili on virulence in Gram-positive bacteria and the unique properties of their biogenesis is a rapidly emerging area of research is presented in this paper, focusing on recent advances in one of the longest-studied Gram-negative pilus systems, the chaperone/usher assembled pili, along with the newcomer to the field, the sortase-assembled pili of Gram positive bacteria.

173 citations


Journal ArticleDOI
TL;DR: This model is a valuable tool for the identification of virulence determinants that can serve as potential antimicrobial targets for the treatment of enterococcal infections and underscores the importance of urinary catheterization during E. faecalis uropathogenesis.
Abstract: Catheter-associated urinary tract infections (CAUTIs) constitute the majority of nosocomial UTIs and pose significant clinical challenges. Enterococcal species are among the predominant causative agents of CAUTIs. However, very little is known about the pathophysiology of Enterococcus-mediated UTIs. We optimized a murine model of foreign body-associated UTI in order to mimic conditions of indwelling catheters in patients. In this model, the presence of a foreign body elicits major histological changes and induces the expression of several proinflammatory cytokines in the bladder. In addition, in contrast to naive mice, infection of catheter-implanted mice with Enterococcus faecalis induced the specific expression of interleukin 1β (IL-1β) and macrophage inflammatory protein 1α (MIP-1α) in the bladder. These responses resulted in a favorable niche for the development of persistent E. faecalis infections in the murine bladders and kidneys. Furthermore, biofilm formation on the catheter implant in vivo correlated with persistent infections. However, the enterococcal autolytic factors GelE and Atn (also known as AtlA), which are important in biofilm formation in vitro, are dispensable in vivo. In contrast, the housekeeping sortase A (SrtA) is critical for biofilm formation and virulence in CAUTIs. Overall, this murine model represents a significant advance in the understanding of CAUTIs and underscores the importance of urinary catheterization during E. faecalis uropathogenesis. This model is also a valuable tool for the identification of virulence determinants that can serve as potential antimicrobial targets for the treatment of enterococcal infections.

159 citations


Journal ArticleDOI
TL;DR: It is suggested that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development.
Abstract: Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs). A murine UTI model has revealed an infection cascade whereby UPEC undergoes cycles of invasion of the bladder epithelium, intracellular proliferation in polysaccharide-containing biofilm-like masses called intracellular bacterial communities (IBC), and then dispersal into the bladder lumen to initiate further rounds of epithelial colonization and invasion. We predicted that the UPEC K1 polysaccharide capsule is a key constituent of the IBC matrix. Compared to prototypic E. coli K1 strain UTI89, a capsule assembly mutant had a fitness defect in functionally TLR4(+) and TLR4(-) mice, suggesting a protective role of capsule in inflamed and noninflamed hosts. K1 capsule assembly and synthesis mutants had dramatically reduced IBC formation, demonstrating the common requirement for K1 polysaccharide in IBC development. The capsule assembly mutant appeared dispersed in the cytoplasm of the bladder epithelial cells and failed to undergo high-density intracellular replication during later stages of infection, when the wild-type strain continued to form serial generations of IBC. Deletion of the sialic acid regulator gene nanR partially restored IBC formation in the capsule assembly mutant. These data suggest that capsule is necessary for efficient IBC formation and that aberrant sialic acid accumulation, resulting from disruption of K1 capsule assembly, produces a NanR-mediated defect in intracellular proliferation and IBC development. Together, these data demonstrate the complex but important roles of UPEC polysaccharide encapsulation and sialic acid signaling in multiple stages of UTI pathogenesis.

110 citations


Journal ArticleDOI
TL;DR: Experimental evaluation showed that proper substitution of this position affected the biological activity of the pilicide compound, resulting in pilicides with significantly increased potencies as measured in pili-dependent biofilm and hemagglutination assays.
Abstract: Pilicides block pili formation by binding to pilus chaperones and blocking their function in the chaperone/usher pathway in E. coli. Various C-2 substituents were introduced on the pilicide scaffol ...

91 citations


Journal ArticleDOI
TL;DR: In a mouse model of UTI, a significant decrease in bacterial invasion, CFU and IBC formation of the pUTI89-cured strain was observed at early time points postinfection compared to the wild type, and the cjr operon was partially implicated in this observed defect.
Abstract: Urinary tract infections (UTIs), the majority of which are caused by uropathogenic Escherichia coli (UPEC), afflict nearly 60% of women within their lifetimes. Studies in mice and humans have revealed that UPEC strains undergo a complex pathogenesis cycle that involves both the formation of intracellular bacterial communities (IBC) and the colonization of extracellular niches. Despite the commonality of the UPEC pathogenesis cycle, no specific urovirulence genetic profile has been determined; this is likely due to the fluid nature of the UPEC genome as the result of horizontal gene transfer and numerous genes of unknown function. UTI89 has a large extrachromosomal element termed pUTI89 with many characteristics of UPEC pathogenicity islands and that likely arose due to horizontal gene transfer. The pUTI89 plasmid has characteristics of both F plasmids and other known virulence plasmids. We sought to determine whether pUTI89 is important for virulence. Both in vitro and in vivo assays were used to examine the function of pUTI89 using plasmid-cured UTI89. No differences were observed between UTI89 and plasmid-cured UTI89 based on growth, type 1 pilus expression, or biofilm formation. However, in a mouse model of UTI, a significant decrease in bacterial invasion, CFU and IBC formation of the pUTI89-cured strain was observed at early time points postinfection compared to the wild type. Through directed deletions of specific operons on pUTI89, the cjr operon was partially implicated in this observed defect. Our findings implicate pUTI89 in the early aspects of infection.

79 citations


Journal ArticleDOI
TL;DR: It is shown that S. saprophyticus preferentially infects C3H/HeN murine kidneys instead of the bladder, a trait observed for multiple clinical isolates, and a useful model system for studying factors involved in the pathogenesis of this Gram-positive uropathogen.
Abstract: Staphylococcus saprophyticus, an obligate human pathogen, is the most common Gram-positive causative agent of urinary tract infection (UTI) in young, healthy women. Despite the clinical importance of S. saprophyticus, little is known about how it causes disease in the urinary tract or how the host responds to the infection. Here we established an in vivo model to study both host and bacterial factors contributing to S. saprophyticus UTI. Using this model, we show that S. saprophyticus preferentially infects C3H/HeN murine kidneys instead of the bladder, a trait observed for multiple clinical isolates. Bacterial persistence in the kidneys was observed in C3H/HeN mice but not in C57BL/6 mice, indicating that host factors strongly contribute to the ability of S. saprophyticus to cause UTI. Using C3H/HeN mice as a model, histologic and immunofluorescence analyses of infected tissues revealed that S. saprophyticus induced epithelial cell shedding in the bladder and an inflammatory response characterized by macrophage and neutrophil infiltration in the bladder and kidneys. The inflammatory response correlated with increased production of proinflammatory cytokines and chemokines in both the bladder and the kidneys. Finally, we observed that the putative S. saprophyticus virulence factors Ssp and SdrI were important for persistence, but not for initial colonization, in the murine urinary tract. Thus, we characterized both host and bacterial factors involved in progression of S. saprophyticus UTI, and we describe a useful model system for studying factors involved in the pathogenesis of this Gram-positive uropathogen.

51 citations


Journal ArticleDOI
TL;DR: A stable and folded fragment of the C-terminal region of the PapC usher is identified and its structure is determined, revealing a beta-sandwich fold very similar to that of the plug domain, a domain of PapC obstructing its translocation domain that suggests similar functions in usher-mediated pilus biogenesis.
Abstract: P pili are extracellular appendages responsible for the targeting of uropathogenic Escherichia coli to the kidney. They are assembled by the chaperone-usher (CU) pathway of pilus biogenesis involving two proteins, the periplasmic chaperone PapD and the outer membrane assembly platform, PapC. Many aspects of the structural biology of the Pap CU pathway have been elucidated, except for the C-terminal domain of the PapC usher, the structure of which is unknown. In this report, we identify a stable and folded fragment of the C-terminal region of the PapC usher and determine its structure using both X-ray crystallography and nuclear magnetic resonance (NMR) spectroscopy. These structures reveal a β-sandwich fold very similar to that of the plug domain, a domain of PapC obstructing its translocation domain. This structural similarity suggests similar functions in usher-mediated pilus biogenesis, playing out at different stages of the process. This structure paves the way for further functional analysis targeting surfaces common to both the plug and the C-terminal domain of PapC.

29 citations


Journal ArticleDOI
TL;DR: The differential affinity of the usher may be critical to ensure assembly of functional pilus fibres and analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis.
Abstract: Attachment to host cells via adhesive surface structures is a prerequisite for the pathogenesis of many bacteria. Uropathogenic Escherichia coli assemble P and type 1 pili for attachment to the host urothelium. Assembly of these pili requires the conserved chaperone/usher pathway, in which a periplasmic chaperone controls the folding of pilus subunits and an outer membrane usher provides a platform for pilus assembly and secretion. The usher has differential affinity for pilus subunits, with highest affinity for the tip-localized adhesin. Here, we identify residues F21 and R652 of the P pilus usher PapC as functioning in the differential affinity of the usher. R652 is important for high-affinity binding to the adhesin whereas F21 is important for limiting affinity for the PapA major rod subunit. PapC mutants in these residues are specifically defective for pilus assembly in the presence of PapA, demonstrating that differential affinity of the usher is required for assembly of complete pili. Analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis. Thus, the differential affinity of the usher may be critical to ensure assembly of functional pilus fibres.

26 citations


Patent
22 Oct 2010
TL;DR: In this article, a presente invention concerne des composes et des methodes for le traitement d'infections des voies urinaires. Butte et al.
Abstract: La presente invention concerne des composes et des methodes pour le traitement d'infections des voies urinaires.