scispace - formally typeset
Search or ask a question

Showing papers in "Molecular Microbiology in 2010"


Journal ArticleDOI
TL;DR: Psl‐specific lectin staining suggests that CdrA either cross‐links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability, and this study identifies a key protein structural component of the P. aeruginosa EPS matrix.
Abstract: Pseudomonas aeruginosa, the principal pathogen of cystic fibrosis patients, forms antibiotic-resistant biofilms promoting chronic colonization of the airways. The extracellular (EPS) matrix is a crucial component of biofilms that provides the community multiple benefits. Recent work suggests that the secondary messenger, cyclic-di-GMP, promotes biofilm formation. An analysis of factors specifically expressed in P. aeruginosa under conditions of elevated c-di-GMP, revealed functions involved in the production and maintenance of the biofilm extracellular matrix. We have characterized one of these components, encoded by the PA4625 gene, as a putative adhesin and designated it cdrA. CdrA shares structural similarities to extracellular adhesins that belong to two-partner secretion systems. The cdrA gene is in a two gene operon that also encodes a putative outer membrane transporter, CdrB. The cdrA gene encodes a 220 KDa protein that is predicted to be rod-shaped protein harbouring a beta-helix structural motif. Western analysis indicates that the CdrA is produced as a 220 kDa proprotein and processed to 150 kDa before secretion into the extracellular medium. We demonstrated that cdrAB expression is minimal in liquid culture, but is elevated in biofilm cultures. CdrAB expression was found to promote biofilm formation and auto-aggregation in liquid culture. Aggregation mediated by CdrA is dependent on the Psl polysaccharide and can be disrupted by adding mannose, a key structural component of Psl. Immunoprecipitation of Psl present in culture supernatants resulted in co-immunoprecipitation of CdrA, providing additional evidence that CdrA directly binds to Psl. A mutation in cdrA caused a decrease in biofilm biomass and resulted in the formation of biofilms exhibiting decreased structural integrity. Psl-specific lectin staining suggests that CdrA either cross-links Psl polysaccharide polymers and/or tethers Psl to the cells, resulting in increased biofilm structural stability. Thus, this study identifies a key protein structural component of the P. aeruginosa EPS matrix.

445 citations


Journal ArticleDOI
TL;DR: This study used Illumina‐based massively parallel sequencing to gain new insight into the transcriptome (RNA‐Seq) of the human malaria parasite, Plasmodium falciparum, and greatly improves existing annotation of the P. falcIParum genome.
Abstract: Recent advances in high-throughput sequencing present a new opportunity to deeply probe an organism's transcriptome. In this study, we used Illumina-based massively parallel sequencing to gain new insight into the transcriptome (RNA-Seq) of the human malaria parasite, Plasmodium falciparum. Using data collected at seven time points during the intraerythrocytic developmental cycle, we (i) detect novel gene transcripts; (ii) correct hundreds of gene models; (iii) propose alternative splicing events; and (iv) predict 5′ and 3′ untranslated regions. Approximately 70% of the unique sequencing reads map to previously annotated protein-coding genes. The RNA-Seq results greatly improve existing annotation of the P. falciparum genome with over 10% of gene models modified. Our data confirm 75% of predicted splice sites and identify 202 new splice sites, including 84 previously uncharacterized alternative splicing events. We also discovered 107 novel transcripts and expression of 38 pseudogenes, with many demonstrating differential expression across the developmental time series. Our RNA-Seq results correlate well with DNA microarray analysis performed in parallel on the same samples, and provide improved resolution over the microarray-based method. These data reveal new features of the P. falciparum transcriptional landscape and significantly advance our understanding of the parasite's red blood cell-stage transcriptome.

370 citations


Journal ArticleDOI
TL;DR: The identification of a regulatory circuit linked to the sigX genes of mutans, pyogenic, and bovis streptococci that uses a novel small, double‐tryptophan‐containing sigX‐inducing peptide (XIP) pheromone is reported, and it is proposed that this circuit is the proximal regulator of sigX in S. mutans and infer that it controls competence in a parallel way in all pyogenic
Abstract: All streptococcal genomes encode the alternative sigma factor SigX and 21 SigX-dependent proteins required for genetic transformation, yet no pyogenic streptococci are known to develop competence. Resolving this paradox may depend on understanding the regulation of sigX. We report the identification of a regulatory circuit linked to the sigX genes of mutans, pyogenic, and bovis streptococci that uses a novel small, double-tryptophan-containing sigX-inducing peptide (XIP) pheromone. In all three groups, the XIP gene (comS), and sigX have identical, non-canonical promoters consisting of 9 bp inverted repeats separated from a -10 hexamer by 19 bp. comS is adjacent to a gene encoding a putative transcription factor of the Rgg family and is regulated by its product, which we designate ComR. Deletion of comR or comS in Streptococcus mutans abolished transformability, as did deletion of the oligopeptide permease subunit oppD, suggesting that XIP is imported. Providing S. mutans with synthetic fragments of ComS revealed that seven C-terminal residues, including the WW motif, cause robust induction of both sigX and the competent state. We propose that this circuit is the proximal regulator of sigX in S. mutans, and we infer that it controls competence in a parallel way in all pyogenic and bovis streptococci.

271 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the DNA‐binding protein H‐NS is involved in silencing the CRISPR‐cas promoters, resulting in cryptic Cas protein expression, and suggested a potential link between two prokaryotic defence systems against foreign DNA.
Abstract: Inheritable bacterial defence systems against phage infection and foreign DNA, termed CRISPR (clustered regularly interspaced short palindromic repeats), consist of cas protein genes and repeat arrays interspaced with sequences originating from invaders. The Cas proteins together with processed small spacer-repeat transcripts (crRNAs) cause degradation of penetrated foreign DNA by unknown mechanisms. Here, we have characterized previously unidentified promoters of the Escherichia coli CRISPR arrays and cas protein genes. Transcription of precursor crRNA is directed by a promoter located within the CRISPR leader. A second promoter, directing cas gene transcription, is located upstream of the genes encoding proteins of the Cascade complex. Furthermore, we demonstrate that the DNA-binding protein H-NS is involved in silencing the CRISPR-cas promoters, resulting in cryptic Cas protein expression. Our results demonstrate an active involvement of H-NS in the induction of the CRISPR-cas system and suggest a potential link between two prokaryotic defence systems against foreign DNA.

268 citations


Journal ArticleDOI
TL;DR: Evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component is presented, a phenomenon described as modularity, and biochemical and evolutionary implications are discussed.
Abstract: Four distinct pathways predicted to facilitate electron flow for respiration of externally located substrates are encoded in the genome of Shewanella oneidensis strain MR-1. Although the pathways share a suite of similar proteins, the activity of only two of these pathways has been described. Respiration of extracellular substrates requires a mechanism to facilitate electron transfer from the quinone pool in the cytoplasmic membrane to terminal reductase enzymes located on the outer leaflet of the outer membrane. The four pathways share MtrA paralogues, a periplasmic electron carrier cytochrome, and terminal reductases similar to MtrC for reduction of metals, flavins and electrodes or to DmsAB for reduction of dimethyl sulphoxide (DMSO). The promiscuity of respiratory electron transfer reactions catalysed by these pathways has made studying strains lacking single proteins difficult. Here, we present a comprehensive analysis of MtrA and MtrC paralogues in S. oneidensis to define the roles of these proteins in respiration of insoluble iron oxide, soluble iron citrate, flavins and DMSO. We present evidence that some periplasmic electron carrier components and terminal reductases in these pathways can provide partial compensation in the absence of the primary component, a phenomenon described as modularity, and discuss biochemical and evolutionary implications.

259 citations


Journal ArticleDOI
TL;DR: Deletion of Ffvel1 and Fflae1 revealed for the first time that velvet can simultaneously act as positive (GAs, fumonisins and fusarin C) and negative (bikaverin) regulator of secondary metabolism, and that both components affect conidiation and virulence of F. fujikuroi.
Abstract: Besides industrially produced gibberellins (GAs), Fusarium fujikuroi is able to produce additional secondary metabolites such as the pigments bikaverin and neurosporaxanthin and the mycotoxins fumonisins and fusarin C. The global regulation of these biosynthetic pathways is only poorly understood. Recently, the velvet complex containing VeA and several other regulatory proteins was shown to be involved in global regulation of secondary metabolism and differentiation in Aspergillus nidulans. Here, we report on the characterization of two components of the F. fujikuroi velvet-like complex, FfVel1 and FfLae1. The gene encoding this first reported LaeA orthologue outside the class of Eurotiomycetidae is upregulated in ΔFfvel1 microarray-studies and FfLae1 interacts with FfVel1 in the nucleus. Deletion of Ffvel1 and Fflae1 revealed for the first time that velvet can simultaneously act as positive (GAs, fumonisins and fusarin C) and negative (bikaverin) regulator of secondary metabolism, and that both components affect conidiation and virulence of F. fujikuroi. Furthermore, the velvet-like protein FfVel2 revealed similar functions regarding conidiation, secondary metabolism and virulence as FfVel1. Cross-genus complementation studies of velvet complex component mutants between Fusarium, Aspergillus and Penicillium support an ancient origin for this complex, which has undergone a divergence in specific functions mediating development and secondary metabolism.

256 citations


Journal ArticleDOI
TL;DR: One level of regulation of the A. nidulans ST cluster employs epigenetic control by H3K9 methylation and HepA binding to establish a repressive chromatin structure and LaeA is involved in reversal of this heterochromatic signature inside the cluster, but not in that of flanking genes.
Abstract: Fungal secondary metabolites are important bioactive compounds but the conditions leading to expression of most of the putative secondary metabolism (SM) genes predicted by fungal genomics are unknown. Here we describe a novel mechanism involved in SM-gene regulation based on the finding that, in Aspergillus nidulans, mutants lacking components involved in heterochromatin formation show de-repression of genes involved in biosynthesis of sterigmatocystin (ST), penicillin and terrequinone A. During the active growth phase, the silent ST gene cluster is marked by histone H3 lysine 9 trimethylation and contains high levels of the heterochromatin protein-1 (HepA). Upon growth arrest and activation of SM, HepA and trimethylated H3K9 levels decrease concomitantly with increasing levels of acetylated histone H3. SM-specific chromatin modifications are restricted to genes located inside the ST cluster, and constitutive heterochromatic marks persist at loci immediately outside the cluster. LaeA, a global activator of SM clusters in fungi, counteracts the establishment of heterochromatic marks. Thus, one level of regulation of the A. nidulans ST cluster employs epigenetic control by H3K9 methylation and HepA binding to establish a repressive chromatin structure and LaeA is involved in reversal of this heterochromatic signature inside the cluster, but not in that of flanking genes.

255 citations


Journal ArticleDOI
TL;DR: Heterologous expression of the fapA–F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation.
Abstract: Summary Amyloids are highly abundant in many microbial biofilms and may play an important role in their architecture. Nevertheless, little is known of the amyloid proteins. We report the discovery of a novel functional amyloid expressed by a Pseudomonas strain of the P. fluorescens group. The amyloid protein was purified and the amyloid-like structure verified. Partial sequencing by MS/MS combined with full genomic sequencing of the Pseudomonas strain identified the gene coding for the major subunit of the amyloid fibril, termed fapC. FapC contains a thrice repeated motif that differs from those previously found in curli fimbrins and prion proteins. The lack of aromatic residues in the repeat shows that aromatic side chains are not needed for efficient amyloid formation. In contrast, glutamine and asparagine residues seem to play a major role in amyloid formation as these are highly conserved in curli, prion proteins and FapC. fapC is conserved in many Pseudomonas strains including the opportunistic pathogen P. aeruginosa and is situated in a conserved operon containing six genes, of which one encodes a fapC homologue. Heterologous expression of the fapA–F operon in Escherichia coli BL21(DE3) resulted in a highly aggregative phenotype, showing that the operon is involved in biofilm formation.

254 citations


Journal ArticleDOI
TL;DR: Using an engineered strain with genomically located spacer matching phage λ, it is shown that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage, however, derepression of the CRISpr/Cas system by disruption of the hns gene leads to high level of protection.
Abstract: CRISPR/Cas, bacterial and archaeal systems of interference with foreign genetic elements such as viruses or plasmids, consist of DNA loci called CRISPR cassettes (a set of variable spacers regularly separated by palindromic repeats) and associated cas genes. When a CRISPR spacer sequence exactly matches a sequence in a viral genome, the cell can become resistant to the virus. The CRISPR/Cas systems function through small RNAs originating from longer CRISPR cassette transcripts. While laboratory strains of Escherichia coli contain a functional CRISPR/Cas system (as judged by appearance of phage resistance at conditions of artificial co-overexpression of Cas genes and a CRISPR cassette engineered to target a λ-phage), no natural phage resistance due to CRISPR system function was observed in this best-studied organism and no E. coli CRISPR spacer matches sequences of well-studied E. coli phages. To better understand the apparently 'silent'E. coli CRISPR/Cas system, we systematically characterized processed transcripts from CRISPR cassettes. Using an engineered strain with genomically located spacer matching phage λ we show that endogenous levels of CRISPR cassette and cas genes expression allow only weak protection against infection with the phage. However, derepression of the CRISPR/Cas system by disruption of the hns gene leads to high level of protection.

250 citations


Journal ArticleDOI
TL;DR: This study demonstrates that the alternative σ‐factor RpoS is a positive transcriptional regulator of psl gene expression and shows that psl mRNA has an extensive 5′ untranslated region, to which the post‐transcriptional regulator RsmA binds and represses psl translation.
Abstract: Extracellular polysaccharides are important components of biofilms. In non-mucoid Pseudomonas aeruginosa strains, the Pel and Psl polysaccharides are major structural components of the biofilm matrix. In this study, we demonstrate that the alternative σ-factor RpoS is a positive transcriptional regulator of psl gene expression. Furthermore, we show that psl mRNA has an extensive 5' untranslated region, to which the post-transcriptional regulator RsmA binds and represses psl translation. Our observations suggest that upon binding RsmA, the region spanning the ribosome binding site of psl mRNA folds into a secondary stem-loop structure that blocks the Shine-Dalgarno sequence, preventing ribosome access and protein translation. This constitutes a novel mechanism for translational repression by this family of regulators.

246 citations


Journal ArticleDOI
TL;DR: It is shown that targeting of the amidase repeats is based on an exclusion strategy mediated by wall teichoic acid (WTA), and by preventing binding of Atl, WTA directs Atl to the cross‐wall to perform the last step of cell division, namely separation of the daughter cells.
Abstract: Staphylococcal cell separation depends largely on the bifunctional autolysin Atl that is processed to amidase-R(1,2) and R(3)-glucosaminidase. These murein hydrolases are targeted via repeat domains (R) to the septal region of the cell surface, thereby allowing localized peptidoglycan hydrolysis and separation of the dividing cells. Here we show that targeting of the amidase repeats is based on an exclusion strategy mediated by wall teichoic acid (WTA). In Staphylococcus aureus wild-type, externally applied repeats (R(1,2)) or endogenously expressed amidase were localized exclusively at the cross-wall region, while in Delta tagO mutant that lacks WTA binding was evenly distributed on the cell surface, which explains the increased fragility and autolysis susceptibility of the mutant. WTA prevented binding of Atl to the old cell wall but not to the cross-wall region suggesting a lower WTA content. In binding studies with ConcanavalinA-fluorescein (ConA-FITC) conjugate that binds preferentially to teichoic acids, ConA-FITC was bound throughout the cell surface with the exception of the cross wall. ConA binding suggest that either content or polymerization of WTA gradually increases with distance from the cross-wall. By preventing binding of Atl, WTA directs Atl to the cross-wall to perform the last step of cell division, namely separation of the daughter cells.

Journal ArticleDOI
TL;DR: Embp is a multifunctional cell surface protein that mediates attachment to host extracellular matrix, biofilm accumulation and escape from phagocytosis, and therefore is well suited for promoting implant‐associated infections.
Abstract: Virulence of nosocomial pathogen Staphylococcus epidermidis is essentially related to formation of adherent biofilms, assembled by bacterial attachment to an artificial surface and subsequent production of a matrix that mediates interbacterial adhesion. Growing evidence supports the idea that proteins are functionally involved in S. epidermidis biofilm accumulation. We found that in S. epidermidis 1585v overexpression of a 460 kDa truncated isoform of the extracellular matrix-binding protein (Embp) is necessary for biofilm formation. Embp is a giant fibronectin-binding protein harbouring 59 Found In Various Architectures (FIVAR) and 38 protein G-related albumin-binding (GA) domains. Studies using defined Embp-positive and -negative S. epidermidis strains proved that Embp is sufficient and necessary for biofilm formation. Further data showed that the FIVAR domains of Embp mediate binding of S. epidermidis to solid-phase attached fibronectin, constituting the first step of biofilm formation on conditioned surfaces. The binding site in fibronectin was assigned to the fibronectin domain type III12. Embp-mediated biofilm formation also protected S. epidermidis from phagocytosis by macrophages. Thus, Embp is a multifunctional cell surface protein that mediates attachment to host extracellular matrix, biofilm accumulation and escape from phagocytosis, and therefore is well suited for promoting implant-associated infections.

Journal ArticleDOI
TL;DR: It is demonstrated that in E. coli H‐NS and LeuO are antagonistic regulators of CRISPR‐based immunity, which leads to enhanced protection against phage infection.
Abstract: The recently discovered prokaryotic CRISPR/Cas defence system provides immunity against viral infections and plasmid conjugation. It has been demonstrated that in Escherichia coli transcription of the Cascade genes (casABCDE) and to some extent the CRISPR array is repressed by heat-stable nucleoid-structuring (H-NS) protein, a global transcriptional repressor. Here we elaborate on the control of the E. coli CRISPR/Cas system, and study the effect on CRISPR-based anti-viral immunity. Transformation of wild-type E. coli K12 with CRISPR spacers that are complementary to phage Lambda does not lead to detectable protection against Lambda infection. However, when an H-NS mutant of E. coli K12 is transformed with the same anti-Lambda CRISPR, this does result in reduced sensitivity to phage infection. In addition, it is demonstrated that LeuO, a LysR-type transcription factor, binds to two sites flanking the casA promoter and the H-NS nucleation site, resulting in derepression of casABCDE12 transcription. Overexpression of LeuO in E. coli K12 containing an anti-Lambda CRISPR leads to an enhanced protection against phage infection. This study demonstrates that in E. coli H-NS and LeuO are antagonistic regulators of CRISPR-based immunity.

Journal ArticleDOI
TL;DR: YgiU is the first RelE‐related mRNA interferase that cleaves mRNA independently of translation, in vivo, and depended on Lon protease that may sense the environmental stresses and activate TA loci by cleavage of the antitoxins.
Abstract: Prokaryotic toxin – antitoxin (TA) loci encode mRNA interferases that inhibit translation, either by cleaving mRNA codons at the ribosomal A site or by cleaving any RNA site-specifically. So far, seven mRNA interferases of Escherichia coli have been identified, four of which cleave mRNA by a translation-dependent mechanism. Here, we experimentally confirmed the presence of three novel TA loci in E. coli. We found that the yafNO, higBA (ygjNM) and ygiUT loci encode mRNA interferases related to RelE. YafO and HigB cleaved translated mRNA only, while YgiU cleaved RNA site-specifically at GC[A/U], independently of translation. Thus, YgiU is the first RelE-related mRNA interferase that cleaves mRNA independently of translation, in vivo. All three loci were induced by amino acid starvation, and inhibition of translation although to different degrees. Carbon starvation induced only two of the loci. The yafNO locus was induced by DNA damage, but the transcription originated from the dinB promoter. Thus, our results showed that the different TA loci responded differentially to environmental stresses. Induction of the three loci depended on Lon protease that may sense the environmental stresses and activate TA loci by cleavage of the antitoxins. Transcription of the three TA operons was autoregulated by the antitoxins.

Journal ArticleDOI
TL;DR: A post‐translational mechanism by which c‐di‐GMP initiates this transition in enteric bacteria by inducing the counterclockwise bias in Escherichia coli flagellar rotation is described and smooth swimming is induced.
Abstract: Elevated levels of the second messenger cyclic dimeric GMP, c-di-GMP, promote transition of bacteria from single motile cells to surface-attached multicellular communities. Here we describe a post-translational mechanism by which c-di-GMP initiates this transition in enteric bacteria. High levels of c-di-GMP induce the counterclockwise bias in Escherichia coli flagellar rotation, which results in smooth swimming. Based on co-immunoprecipitation, two-hybrid and mutational analyses, the E. coli c-di-GMP receptor YcgR binds to the FliG subunit of the flagellum switch complex, and the YcgR-FliG interaction is strengthened by c-di-GMP. The central fragment of FliG binds to YcgR as well as to FliM, suggesting that YcgR-c-di-GMP biases flagellum rotation by altering FliG-FliM interactions. The c-di-GMP-induced smooth swimming promotes trapping of motile bacteria in semi-solid media and attachment of liquid-grown bacteria to solid surfaces, whereas c-di-GMP-dependent mechanisms not involving YcgR further facilitate surface attachment. The YcgR-FliG interaction is conserved in the enteric bacteria, and the N-terminal YcgR/PilZN domain of YcgR is required for this interaction. YcgR joins a growing list of proteins that regulate motility via the FliG subunit of the flagellum switch complex, which suggests that FliG is a common regulatory entryway that operates in parallel with the chemotaxis that utilizes the FliM-entryway.

Journal ArticleDOI
TL;DR: Evidence is provided that associated to LapA a cellulase‐degradable exopolysaccharide is part of the P.’putida biofilm matrix, indicating that LapG exerts its activity on LapA in response to a decrease in the intracellular c‐di‐GMP level.
Abstract: Pseudomonas putida OUS82 biofilm dispersal was previously shown to be dependent on the gene PP0164 (here designated lapG). Sequence and structural analysis has suggested that the LapG geneproduct belongs to a family of cysteine proteinases that function in the modification of bacterial surface proteins. We provide evidence that LapG is involved in P. putida OUS82 biofilm dispersal through modification of the outer membrane-associated protein LapA. While the P. putida lapG mutant formed more biofilm than the wild-type, P. putida lapA and P. putida lapAG mutants displayed decreased surface adhesion and were deficient in subsequent biofilm formation, suggesting that LapG affects LapA, and that the LapA protein functions both as a surface adhesin and as a biofilm matrix component. Lowering of the intracellular c-di-GMP level via induction of an EAL domain protein led to dispersal of P. putida wild-type biofilm but did not disperse P. putida lapG biofilm, indicating that LapG exerts its activity on LapA in response to a decrease in the intracellular c-di-GMP level. In addition, evidence is provided that associated to LapA a cellulase-degradable exopolysaccharide is part of the P. putida biofilm matrix.

Journal ArticleDOI
TL;DR: The findings provide a method to predict the sensitivity of a fungus to chitosan based on its plasma membrane composition, and suggests a new strategy for antifungal therapy, which involves treatments that increase plasma membrane fluidity to make fungi more sensitive to fungicides such as chitOSan.
Abstract: The antifungal mode of action of chitosan has been studied for the last 30 years, but is still little understood. We have found that the plasma membrane forms a barrier to chitosan in chitosan-resistant but not chitosan-sensitive fungi. The plasma membranes of chitosan-sensitive fungi were shown to have more polyunsaturated fatty acids than chitosan-resistant fungi, suggesting that their permeabilization by chitosan may be dependent on membrane fluidity. A fatty acid desaturase mutant of Neurospora crassa with reduced plasma membrane fluidity exhibited increased resistance to chitosan. Steady-state fluorescence anisotropy measurements on artificial membranes showed that chitosan binds to negatively charged phospholipids that alter plasma membrane fluidity and induces membrane permeabilization, which was greatest in membranes containing more polyunsaturated lipids. Phylogenetic analysis of fungi with known sensitivity to chitosan suggests that chitosan resistance may have evolved in nematophagous and entomopathogenic fungi, which naturally encounter chitosan during infection of arthropods and nematodes. Our findings provide a method to predict the sensitivity of a fungus to chitosan based on its plasma membrane composition, and suggests a new strategy for antifungal therapy, which involves treatments that increase plasma membrane fluidity to make fungi more sensitive to fungicides such as chitosan.

Journal ArticleDOI
TL;DR: Results show that organisms that are routinely exposed to oxidants rely upon Suf rather than Isc for cluster assembly, suggesting that oxidants disrupt Isc by oxidizing clusters as they are assembled on or transferred from the IscU scaffold.
Abstract: Environmental H(2) O(2) creates several injuries in Escherichia coli, including the oxidative conversion of dehydratase [4Fe-4S] clusters to an inactive [3Fe-4S] form. To protect itself, H(2) O(2) -stressed E. coli activates the OxyR regulon. This regulon includes the suf operon, which encodes an alternative to the housekeeping Isc iron-sulphur cluster assembly system. Previously studied [3Fe-4S] clusters are repaired by an Isc/Suf-independent pathway, so the rationale for Suf induction was not obvious. Using strains that cannot scavenge H(2) O(2) , we imposed chronic low-grade stress and found that suf mutants could not maintain the activity of isopropylmalate isomerase, a key iron-sulphur dehydratase. Experiments showed that its damaged cluster was degraded in vivo beyond the [3Fe-4S] state, presumably to an apoprotein form, and thus required a de novo assembly system for reactivation. Surprisingly, submicromolar H(2) O(2) poisoned the Isc machinery, thereby creating a requirement for Suf both to repair the isomerase and to activate nascent Fe-S enzymes in general. The IscS and IscA components of the Isc system are H(2) O(2) -resistant, suggesting that oxidants disrupt Isc by oxidizing clusters as they are assembled on or transferred from the IscU scaffold. Consistent with these results, organisms that are routinely exposed to oxidants rely upon Suf rather than Isc for cluster assembly.

Journal ArticleDOI
TL;DR: Mechanisms for intimate H. pylori vesicle–host interactions are explored and it is found that the vesicles carry effector‐promoting properties that are important to disease development.
Abstract: Helicobacter pylori can cause peptic ulcer disease and/or gastric cancer. Adhesion of bacteria to the stomach mucosa is an important contributor to the vigour of infection and resulting virulence. H. pylori adheres primarily via binding of BabA adhesins to ABO/Lewis b (Leb) blood group antigens and the binding of SabA adhesins to sialyl-Lewis x/a (sLex/a) antigens. Similar to most Gram-negative bacteria, H. pylori continuously buds off vesicles and vesicles derived from pathogenic bacteria often include virulence-associated factors. Here we biochemically characterized highly purified H. pylori vesicles. Major protein and phospholipid components associated with the vesicles were identified with mass spectroscopy and nuclear magnetic resonance. A subset of virulence factors present was confirmed by immunoblots. Additional functional and biochemical analysis focused on the vesicle BabA and SabA adhesins and their respective interactions to human gastric epithelium. Vesicles exhibit heterogeneity in their protein composition, which were specifically studied in respect to the BabA adhesin. We also demonstrate that the oncoprotein, CagA, is associated with the surface of H. pylori vesicles. Thus, we have explored mechanisms for intimate H. pylori vesicle-host interactions and found that the vesicles carry effector-promoting properties that are important to disease development.

Journal ArticleDOI
TL;DR: This review focuses on the proteins which have been identified as STPK substrates and involved in the synthesis of major cell envelope components and cell shape/division in actinomycetes and describes how phosphorylation affects the activity of peptidoglycan biosynthetic enzymes or cell division proteins.
Abstract: Mycobacterium tuberculosis (M. tb) has a complex lifestyle in different environments and involving several developmental stages. The success of M. tb results from its remarkable capacity to survive within the infected host, where it can persist in a non-replicating state for several decades. The survival strategies developed by M. tb are linked to the presence of an unusual cell envelope. However, little is known regarding its capacity to modulate and adapt production of cell wall components in response to environmental conditions or to changes in cell shape and cell division. Signal sensing leading to cellular responses must be tightly regulated to allow survival under variable conditions. Although prokaryotes generally control their signal transduction processes through two-component systems, signalling through Ser/Thr phosphorylation has recently emerged as a critical regulatory mechanism in bacteria. The genome of M. tb possesses a large family of eukaryotic-like Ser/Thr protein kinases (STPKs). The physiological roles of several mycobacterial STPK substrates are connected to cell shape/division and cell envelope biosynthesis. Although these regulatory mechanisms have mostly been studied in Mycobacterium, Ser/Thr phosphorylation appears also to regulate cell division and peptidoglycan synthesis in Corynebacterium and Streptomyces. This review focuses on the proteins which have been identified as STPK substrates and involved in the synthesis of major cell envelope components and cell shape/division in actinomycetes. It is also intended to describe how phosphorylation affects the activity of peptidoglycan biosynthetic enzymes or cell division proteins.

Journal ArticleDOI
TL;DR: The important roles of vitronectin in bacterial pathogenesis are focused on and different strategies used by pathogens to evade the host response by the help of this intriguing molecule are described.
Abstract: The multifunctional human glycoprotein vitronectin (Vn) plays a significant role in cell migration, tissue repair and regulation of membrane attack complex (MAC) formation. It also promotes neutrophil infiltration and, thus, enhances the inflammatory process during infection. In the host, a balanced homeostasis is maintained by Vn due to neutralization of the self-reactivity of the MAC. On the other hand, Vn bound to the bacterial surface protects from MAC-mediated lysis and enhances adhesion. Gram-negative bacterial pathogens including Moraxella catarrhalis, Haemophilus influenzae and Neisseria gonorrhoeae use Vn recruitment to prevent MAC deposition at their surface. Moreover, Gram-positive bacterial pathogens such as Streptococcus pneumoniae and S. pyogenes utilize Vn for effective adhesion to host cells and subsequent internalization. Vitronectin has an Arg-Gly-Asp (RGD) sequence for binding the host cell integrin receptors and a separate bacterial-binding domain for pathogens, and thus more likely functions to cross-link bacteria and epithelial cells. Once bacteria are attached to the vitronectin-integrin complex, various host cell-signalling events are activated and promote internalization. In this review, we focus on the important roles of vitronectin in bacterial pathogenesis and describe different strategies used by pathogens to evade the host response by the help of this intriguing molecule.

Journal ArticleDOI
TL;DR: This study provides the first evidence for a connection between bacterial copper response and the virulence of M. tuberculosis, supporting the hypothesis that copper response could be important to intracellular pathogens, in general.
Abstract: Summary Copper is a required micronutrient that is also toxic at excess concentrations. Currently, little is known about the role of copper in interactions between bacterial pathogens and their human hosts. In this study, we elucidate a mechanism for copper homeostasis in the human pathogen Mycobacterium tuberculosis via characterization of a putative copper exporter, CtpV. CtpV was shown to be required by M. tuberculosis to maintain resistance to copper toxicity. Furthermore, the deletion of ctpV resulted in a 98-gene transcriptional response, which elucidates the increased stress experienced by the bacteria in the absence of this detoxification mechanism. Interestingly, although the ΔctpV mutant survives close to the wild-type levels in both murine and guinea pig models of tuberculosis, animals infected with the ΔctpV mutant displayed decreased lung damage, and mutant-infected mice had a reduced immune response to the bacteria as well as a significant increase in survival time relative to mice infected with wild-type M. tuberculosis. Overall, our study provides the first evidence for a connection between bacterial copper response and the virulence of M. tuberculosis, supporting the hypothesis that copper response could be important to intracellular pathogens, in general.

Journal ArticleDOI
TL;DR: Through gene overexpression, a novel BldD target gene (cdgA) is identified that influences differentiation and antibiotic production in Streptomyces coelicolor and is implicating c‐di‐GMP in the regulation of StrePTomyces development.
Abstract: BldD is a transcriptional regulator essential for morphological development and antibiotic production in Streptomyces coelicolor. Here we identify the BldD regulon by means of chromatin immunoprecipitation-microarray analysis (ChIP-chip). The BldD regulon encompasses ~167 transcriptional units, of which more than 20 are known to play important roles in development (e.g. bldA, bldC, bldH/adpA, bldM, bldN, ssgA, ssgB, ftsZ, whiB, whiG, smeA-ssfA) and/or secondary metabolism (e.g. nsdA, cvn9, bldA, bldC, leuA). Strikingly, 42 BldD target genes (~25% of the regulon) encode regulatory proteins, stressing the central, pleiotropic role of BldD. Almost all BldD binding sites identified by ChIP-chip are present in the promoters of the target genes. An exception is the tRNA gene bldA, where BldD binds within the region encoding the primary transcript, immediately downstream of the position corresponding to the processed, mature 3 end of the tRNA. Through gene overexpression, we identified a novel BldD target gene (cdgA) that influences differentiation and antibiotic production. cdgA encodes a GGDEF domain protein, implicating c-di-GMP in the regulation of Streptomyces development. Sequence analysis of the upstream regions of the complete regulon identified a 15 bp inverted repeat that functions as a high-affinity binding site for BldD, as was shown by electrophoretic mobility shift assays and DNase I footprinting analysis. High-scoring copies of the BldD binding site were found at relevant positions in the genomes of other bacteria containing a BldD homologue, suggesting the role of BldD is conserved in sporulating actinomycetes.

Journal ArticleDOI
TL;DR: This work directly visualize ParA binding to DNA using total internal reflection fluorescence microscopy, and proposes that this time delay, combined with stimulation of ParA's ATPase activity by ParB bound to the plasmid DNA, generates an uneven distribution of the nucleoid‐associated ParA, and provides the motive force for plasmids segregation prior to cell division.
Abstract: P1 ParA is a member of the Walker-type family of partition ATPases involved in the segregation of plasmids and bacterial chromosomes. ATPases of this class interact with DNA non-specifically in vitro and colocalize with the bacterial nucleoid to generate a variety of reported patterns in vivo. Here, we directly visualize ParA binding to DNA using total internal reflection fluorescence microscopy. This activity depends on, and is highly specific for ATP. DNA-binding activity is not coupled to ATP hydrolysis. Rather, ParA undergoes a slow multi-step conformational transition upon ATP binding, which licenses ParA to bind non-specific DNA. The kinetics provide a time-delay switch to allow slow cycling between the DNA binding and non-binding forms of ParA. We propose that this time delay, combined with stimulation of ParA's ATPase activity by ParB bound to the plasmid DNA, generates an uneven distribution of the nucleoid-associated ParA, and provides the motive force for plasmid segregation prior to cell division.

Journal ArticleDOI
TL;DR: The results suggest that the interdependent localization of MreB and MreD functions to spatially organize a complex of peptidoglycan precursor synthesis proteins, which is required for propagation of a uniform cell shape and catalytically efficient peptidglycan synthesis.
Abstract: In Caulobacter crescentus, intact cables of the actin homologue, MreB, are required for the proper spatial positioning of MurG which catalyses the final step in peptidoglycan precursor synthesis. Similarly, in the periplasm, MreC controls the spatial orientation of the penicillin binding proteins and a lytic transglycosylase. We have now found that MreB cables are required for the organization of several other cytosolic murein biosynthetic enzymes such as MraY, MurB, MurC, MurE and MurF. We also show these proteins adopt a subcellular pattern of localization comparable to MurG, suggesting the existence of cytoskeletal-dependent interactions. Through extensive two-hybrid analyses, we have now generated a comprehensive interaction map of components of the bacterial morphogenetic complex. In the cytosol, this complex contains both murein biosynthetic enzymes and morphogenetic proteins, including RodA, RodZ and MreD. We show that the integral membrane protein, MreD, is essential for lateral peptidoglycan synthesis, interacts with the precursor synthesizing enzymes MurG and MraY, and additionally, determines MreB localization. Our results suggest that the interdependent localization of MreB and MreD functions to spatially organize a complex of peptidoglycan precursor synthesis proteins, which is required for propagation of a uniform cell shape and catalytically efficient peptidoglycan synthesis.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the hydrogen peroxide generation in Escherichia coli using a strain lacking scavenging enzymes and found that the deletion of many abundant flavoenzymes that are known to autoxidize in vitro did not substantially lessen overall H(2)O(2 ) formation.
Abstract: Mechanisms of hydrogen peroxide generation in Escherichia coli were investigated using a strain lacking scavenging enzymes. Surprisingly, the deletion of many abundant flavoenzymes that are known to autoxidize in vitro did not substantially lessen overall H(2)O(2) formation. However, H(2)O(2) production diminished by 25-30% when NadB turnover was eliminated. The flavin-dependent desaturating dehydrogenase, NadB uses fumarate as an electron acceptor in anaerobic cells. Experiments showed that aerobic NadB turnover depends upon its oxidation by molecular oxygen, with H(2)O(2) as a product. This reaction appears to be mechanistically adventitious. In contrast, most desaturating dehydrogenases are associated with the respiratory chain and deliver electrons to fumarate anaerobically or oxygen aerobically without the formation of toxic by-products. Presumably, NadB can persist as an H(2)O(2)-generating enzyme because its flux is limited. The anaerobic respiratory enzyme fumarate reductase uses a flavoprotein subunit that is homologous to NadB and accordingly forms substantial H(2)O(2) upon aeration. This tendency is substantially suppressed by cytochrome oxidase. Thus cytochrome d oxidase, which is prevalent among anaerobes, may diminish intracellular H(2)O(2) formation by the anaerobic respiratory chain, whenever these organisms encounter oxygen. These two examples reveal biochemical and physiological arrangements through which evolution has minimized the rate of intracellular oxidant formation.

Journal ArticleDOI
TL;DR: The data suggest that deactivation of Rex is a prerequisite for this phenomenon, since the activity of lactate dehydrogenase enables S. aureus to resist NO stress and thus the innate immune response.
Abstract: An alignment of upstream regions of anaerobically induced genes in Staphylococcus aureus revealed the presence of an inverted repeat, corresponding to Rex binding sites in Streptomyces coelicolor. Gel shift experiments of selected upstream regions demonstrated that the redox-sensing regulator Rex of S. aureus binds to this inverted repeat. The binding sequence – TTGTGAAW4TTCACAA – is highly conserved in S. aureus. Rex binding to this sequence leads to the repression of genes located downstream. The binding activity of Rex is enhanced by NAD+ while NADH, which competes with NAD+ for Rex binding, decreases the activity of Rex. The impact of Rex on global protein synthesis and on the activity of fermentation pathways under aerobic and anaerobic conditions was analysed by using a rex-deficient strain. A direct regulatory effect of Rex on the expression of pathways that lead to anaerobic NAD+ regeneration, such as lactate, formate and ethanol formation, nitrate respiration, and ATP synthesis, is verified. Rex can be considered a central regulator of anaerobic metabolism in S. aureus. Since the activity of lactate dehydrogenase enables S. aureus to resist NO stress and thus the innate immune response, our data suggest that deactivation of Rex is a prerequisite for this phenomenon.

Journal ArticleDOI
TL;DR: Results indicate that AP2‐Sp is a major transcription factor that regulates gene expression in the sporozoite stage and identifies specific eight‐base sequences, beginning with TGCATG, which are present in the proximal promoter region of all known sporozoites‐specific genes.
Abstract: The malarial sporozoite is the stage that infects the liver, and genes expressed in this stage are potential targets for vaccine development Here, we demonstrate that specific gene expression in this stage is regulated by an AP2-related transcription factor, designated AP2-Sp (APETALA2 in sporozoites), that is expressed from the late oocyst to the salivary gland sporozoite Disruption of the AP2-Sp gene did not affect parasite replication in the erythrocyte but resulted in loss of sporozoite formation The electrophoretic mobility-shift assay showed that the DNA-binding domain of AP2-Sp recognizes specific eight-base sequences, beginning with TGCATG, which are present in the proximal promoter region of all known sporozoite-specific genes Promoter assays demonstrated that these sequences act as cis-acting elements and are critical for the expression of sporozoite-specific genes with different expression profiles In transgenic parasites that express endogenous AP2-O (APETALA2 in ookinetes), but whose AP2 domain had been swapped with that of AP2-Sp, several target genes of AP2-Sp were induced in the ookinete stage These results indicate that AP2-Sp is a major transcription factor that regulates gene expression in the sporozoite stage

Journal ArticleDOI
TL;DR: The current understanding of protein acetylation in eukaryotes is summarized, the emerging link between acetylates and metabolism is discussed and the best‐studied examples ofprotein acetylations in bacteria are highlighted.
Abstract: Protein acetylation has historically been considered a predominantly eukaryotic phenomenon. Recent evidence, however, supports the hypothesis that acetylation broadly impacts bacterial physiology. To explore more rapidly the impact of protein acetylation in bacteria, microbiologists can benefit from the strong foundation established by investigators of protein acetylation in eukaryotes. To help advance this learning process, we will summarize the current understanding of protein acetylation in eukaryotes, discuss the emerging link between acetylation and metabolism and highlight the best-studied examples of protein acetylation in bacteria.

Journal ArticleDOI
TL;DR: The triple sod1/sod2/ sod3 mutant was characterized by a delay in conidial germination, a reduced conidials survival during storage overtime, the highest sensitivity to menadione and an increased sensitivity to killing by alveolar macrophage of immunocompetent mice.
Abstract: Reactive oxidant species produced by phagocytes have been reported as being involved in the killing of Aspergillus fumigatus. Fungal superoxide dismutases (SODs) that detoxify superoxide anions could be putative virulence factors for this opportunistic pathogen. Four genes encoding putative Sods have been identified in the A. fumigatus genome: a cytoplasmic Cu/ZnSOD (AfSod1p), a mitochondrial MnSOD (AfSod2p), a cytoplasmic MnSOD (AfSod3p) and AfSod4 displaying a MnSOD C-terminal domain. During growth, AfSOD1 and AfSOD2 were highly expressed in conidia whereas AfSOD3 was only strongly expressed in mycelium. AfSOD4 was weakly expressed compared with other SODs. The deletion of AfSOD4 was lethal. Delta sod1 and Delta sod2 mutants showed a growth inhibition at high temperature and a hypersensitivity to menadione whereas the sod3 mutant had only a slight growth delay at high temperature. Multiple mutations had only an additive effect on the phenotype. The triple sod1/sod2/sod3 mutant was characterized by a delay in conidial germination, a reduced conidial survival during storage overtime, the highest sensitivity to menadione and an increased sensitivity to killing by alveolar macrophage of immunocompetent mice. In spite of these phenotypes, no significant virulence difference was observed between the triple mutant and parental strain in experimental murine aspergillosis models in immunocompromised animals.