scispace - formally typeset
Search or ask a question

Showing papers by "Silvano Sozzani published in 2021"


Journal ArticleDOI
TL;DR: In this article, single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome were identified as direct activators of endosomal TLR7/8 and MyD88 pathway.
Abstract: The inflammatory and IFN pathways of innate immunity play a key role in the resistance and pathogenesis of coronavirus disease 2019 (COVID-19). Innate sensors and SARS-CoV-2-associated molecular patterns (SAMPs) remain to be completely defined. Here, we identified single-stranded RNA (ssRNA) fragments from the SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and function, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream of these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identified TLR7/8 as a crucial cellular sensor of ssRNAs encoded by SARS-CoV-2 involved in host resistance and the disease pathogenesis of COVID-19.

71 citations


Posted ContentDOI
15 Apr 2021-bioRxiv
TL;DR: In this article, single-stranded RNA (ssRNA) fragments from SARS-CoV-2 genome were identified as direct activators of endosomal TLR7/8 and MyD88 pathway.
Abstract: The inflammatory and IFN pathways of innate immunity play a key role in both resistance and pathogenesis of Coronavirus Disease 2019 (COVID-19). Innate sensors and SARS-CoV-2-Associated Molecular Patterns (SAMPs) remain to be completely defined. Here we identify single-stranded RNA (ssRNA) fragments from SARS-CoV-2 genome as direct activators of endosomal TLR7/8 and MyD88 pathway. The same sequences induced human DC activation in terms of phenotype and functions, such as IFN and cytokine production and Th1 polarization. A bioinformatic scan of the viral genome identified several hundreds of fragments potentially activating TLR7/8, suggesting that products of virus endosomal processing potently activate the IFN and inflammatory responses downstream these receptors. In vivo, SAMPs induced MyD88-dependent lung inflammation characterized by accumulation of proinflammatory and cytotoxic mediators and immune cell infiltration, as well as splenic DC phenotypical maturation. These results identify TLR7/8 as crucial cellular sensors of ssRNAs encoded by SARS-CoV-2 involved in host resistance and disease pathogenesis of COVID-19.

54 citations


Journal ArticleDOI
TL;DR: It is shown that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice, and that ILC3‐ILC1 plasticity contributes to delineate the heterogeneity of liver I LC1, and is characterized by graded cytotoxic potential and ability to produce IFN‐γ.
Abstract: Type 1 innate lymphoid cells (ILC1) are tissue-resident lymphocytes that provide early protection against bacterial and viral infections. Discrete transcriptional states of ILC1 have been identified in homeostatic and pathological contexts. However, whether these states delineate ILC1 with different functional properties is not completely understood. Here, we show that liver ILC1 are heterogeneous for the expression of distinct effector molecules and surface receptors, including granzyme A (GzmA) and CD160, in mice. ILC1 expressing high levels of GzmA are enriched in the liver of adult mice, and represent the main hepatic ILC1 population at birth. However, the heterogeneity of GzmA and CD160 expression in hepatic ILC1 begins perinatally and increases with age. GzmA+ ILC1 differ from NK cells for the limited homeostatic requirements of JAK/STAT signals and the transcription factor Nfil3. Moreover, by employing Rorc(γt)-fate map (fm) reporter mice, we established that ILC3-ILC1 plasticity contributes to delineate the heterogeneity of liver ILC1, with RORγt-fm+ cells skewed toward a GzmA- CD160+ phenotype. Finally, we showed that ILC1 defined by the expression of GzmA and CD160 are characterized by graded cytotoxic potential and ability to produce IFN-γ. In conclusion, our findings help deconvoluting ILC1 heterogeneity and provide evidence for functional diversification of liver ILC1.

22 citations


Book ChapterDOI
TL;DR: This work describes a protocol of urethane-induced lung cancer effective in lung tumor induction in C57BL/6J strain mice, a valuable model of Kras-driven lung cancer.
Abstract: Chemical induced carcinogenesis together with genetically engineered mouse models represent important approaches for the study of the complex mechanisms involving genotype and environmental factors in cancer development, including lung cancer. The induction of lung tumor in mice with urethane (ethyl carbamate) is considered a valuable model of Kras-driven lung cancer. However, inbred mouse strains show variable susceptibility to lung tumor formation, with C57BL/6 background, widely used to study many transgenic and null mutations, highly resistant to lung carcinogenesis. Here is described a protocol of urethane-induced lung cancer effective in lung tumor induction in C57BL/6J strain. Multiple urethane injections are needed to overcome genetic resistance and induce in a reproducible manner lung carcinogenesis in C57BL/6J background mice.

9 citations


Journal ArticleDOI
TL;DR: In this article, the effect of hypoxia (2% O2) on the expression of RNASET2 in Dendritic Cells (DCs) was investigated. And it was shown that hypoxias enhanced the expression and secretion of R NASET2, with new perspectives on its implication for TME and therefore in anti-tumor immunity.
Abstract: Hypoxia is a key component of the tumor microenvironment (TME) and promotes not only tumor growth and metastasis, but also negatively affects infiltrating immune cells by impairing host immunity. Dendritic cells (DCs) are the most potent antigen-presenting cells and their biology is weakened in the TME in many ways, including the modulation of their viability. RNASET2 belongs to the T2 family of extracellular ribonucleases and, besides its nuclease activity, it exerts many additional functions. Indeed, RNASET2 is involved in several human pathologies, including cancer, and it is functionally relevant in the TME. RNASET2 functions are not restricted to cancer cells and its expression could be relevant also in other cell types which are important players in the TME, including DCs. Therefore, this study aimed to unravel the effect of hypoxia (2% O2) on the expression of RNASET2 in DCs. Here, we showed that hypoxia enhanced the expression and secretion of RNASET2 in human monocyte-derived DCs. This paralleled the HIF-1α accumulation and HIF-dependent and -independent signaling, which are associated with DCs’ survival/autophagy/apoptosis. RNASET2 expression, under hypoxia, was regulated by the PI3K/AKT pathway and was almost completely abolished by TLR4 ligand, LPS. Taken together, these results highlight how hypoxia- dependent and -independent pathways shape RNASET2 expression in DCs, with new perspectives on its implication for TME and, therefore, in anti-tumor immunity.

5 citations


Journal ArticleDOI
05 Oct 2021-Cancers
TL;DR: In this paper, the role played by CCRL2 in mouse cancer models was investigated and it was shown that CCRL 2 shares functional similarities with the family of atypical chemokine receptors (ACKRs).
Abstract: CCRL2 belongs to the G protein-coupled receptor family and is one of the three chemerin receptors. It is considered as a non-signaling receptor, presenting chemerin to cells expressing the functional chemerin receptor ChemR23/CMKLR1 and possibly GPR1. In the present work, we investigate the role played by CCRL2 in mouse cancer models. Loss of function of Ccrl2 accelerated the development of papillomas in a chemical model of skin carcinogenesis (DMBA/TPA), whereas the growth of B16 and LLC tumor cell grafts was delayed. Delayed tumor growth was also observed when B16 and LLC cells overexpress CCRL2, while knockout of Ccrl2 in tumor cells reversed the consequences of Ccrl2 knockout in the host. The phenotypes associated with CCRL2 gain or loss of function were largely abrogated by knocking out the chemerin or Cmklr1 genes. Cells harboring CCRL2 could concentrate bioactive chemerin and promote the activation of CMKLR1-expressing cells. A reduction of neoangiogenesis was observed in tumor grafts expressing CCRL2, mimicking the phenotype of chemerin-expressing tumors. This study demonstrates that CCRL2 shares functional similarities with the family of atypical chemokine receptors (ACKRs). Its expression by tumor cells can significantly tune the effects of the chemerin/CMKLR1 system and act as a negative regulator of tumorigenesis.

5 citations


Journal ArticleDOI
TL;DR: In this paper, the role of Mesenchymal stromal cells (MSCs) as a reservoir of B. henselae infection and modulator of EC functions was investigated.
Abstract: Some bacterial pathogens can manipulate the angiogenic response, suppressing or inducing it for their own ends. In humans, Bartonella henselae is associated with cat-scratch disease and vasculoproliferative disorders such as bacillary angiomatosis and bacillary peliosis. Although endothelial cells (ECs) support the pathogenesis of B. henselae, the mechanisms by which B. henselae induces EC activation are not completely clear, as well as the possible contributions of other cells recruited at the site of infection. Mesenchymal stromal cells (MSCs) are endowed with angiogenic potential and play a dual role in infections, exerting antimicrobial properties but also acting as a shelter for pathogens. Here, we delved into the role of MSCs as a reservoir of B. henselae and modulator of EC functions. B. henselae readily infected MSCs and survived in perinuclearly bound vacuoles for up to 8 days. Infection enhanced MSC proliferation and the expression of epidermal growth factor receptor (EGFR), Toll-like receptor 2 (TLR2), and nucleotide-binding oligomerization domain-containing protein 1 (NOD1), proteins that are involved in bacterial internalization and cytokine production. Secretome analysis revealed that infected MSCs secreted higher levels of the proangiogenic factors vascular endothelial growth factor (VEGF), fibroblast growth factor 7 (FGF-7), matrix metallopeptidase 9 (MMP-9), placental growth factor (PIGF), serpin E1, thrombospondin 1 (TSP-1), urokinase-type plasminogen activator (uPA), interleukin 6 (IL-6), platelet-derived growth factor D (PDGF-D), chemokine ligand 5 (CCL5), and C-X-C motif chemokine ligand 8 (CXCL8). Supernatants from B. henselae-infected MSCs increased the susceptibility of ECs to B. henselae infection and enhanced EC proliferation, invasion, and reorganization in tube-like structures. Altogether, these results indicate MSCs as a still underestimated niche for persistent B. henselae infection and reveal MSC-EC cross talk that may contribute to exacerbate bacterium-induced angiogenesis and granuloma formation.

5 citations