scispace - formally typeset
Search or ask a question

Showing papers by "Stefan E. Schulz published in 2013"


Journal ArticleDOI
TL;DR: Voltage-dependent current mapping and current–voltage characteristics recorded down to single CNT allow for a comprehensive insight into the electric behaviour of the hybrid structure.
Abstract: We report on and emphasize the versatility of conductive atomic force microscopy in characterizing vertically aligned carbon nanotubes (CNTs) aimed to be used in via interconnect technology. The study is conducted on multi-walled CNT arrays vertically grown on a copper-based metal line. Voltage-dependent current mapping and current–voltage characteristics recorded down to single CNT allow for a comprehensive insight into the electric behaviour of the hybrid structure.

16 citations


Journal ArticleDOI
TL;DR: In this paper, a thermal atomic layer deposition (ALD) of Cu"xO from the liquid Cu(I) @b-diketonate precursor [(^nBu"3P)"2Cu(acac)] and wet oxygen at 135.

10 citations


Proceedings ArticleDOI
Mario Baum1, Lutz Hofmann1, Maik Wiemer1, Stefan E. Schulz1, Thomas Gessner1 
07 Nov 2013
TL;DR: In this paper, the authors optimized and adapted 3D integration technologies to reach a high yield using quite narrow contact areas and bond frames, which enable mechanical stable bonding with high degree of strength, hermeticity, and an electrical connection from all layers of the stack to the next level.
Abstract: 3D integration technologies show increasing importance for high volume applications while realizing the smallest system dimensions at least. Therefore vertical interconnect and wafer bonding technologies were optimized and adapted to reach a high yield using quite narrow contact areas and bond frames. These technologies must enable mechanical stable bonding with high degree of strength, hermeticity, and an electrical connection from all layers of the stack to the next level.

8 citations


Journal ArticleDOI
TL;DR: In this paper, the mechanisms of electrokinetics and electrohydrodynamics are systematically analyzed through numerical simulations for a set of parameters that are typically used for assembling SWCNTs between metal electrodes.
Abstract: Single-walled carbon nanotubes (SWCNTs) as the colloid in a colloidal solution can be polarized in a non-uniform electric field and experience a net force that is the so-called dielectrophoresis (DEP) force, due to the interaction between the induced dipoles and the electric field. The positive DEP force can be used to position and assemble arrays of SWCNTs. Inversely, the negative DEP force can be utilized to separate SWCNTs in terms of their electronic properties. Moreover, Joule heating generated by the electric field can lead to other electrokinetics forces in the colloidal solution, which give rise to fluidic motion of the solution. Additionally, at low frequencies, the electrical double layer also induces a steady fluidic motion, a phenomenon known as AC electroosmotic flow. These fluidic motion in turn exerts a drag force on the nanotubes. Hence, to controllably assemble SWCNTs using DEP force is a non-trivial task. In this article, the mechanisms of electrokinetics and electrohydrodynamics are systematically analyzed through numerical simulations for a set of parameters that are typically used for assembling SWCNTs between metal electrodes. Finally, experimental results from the frequency-dependent assembly of SWCNTs using this set of parameters are described and discussed. These results show that the density of SWCNTs assembled between electrodes can be varied by controlling the electrokinetics parameters.

8 citations


Proceedings ArticleDOI
13 Jun 2013
TL;DR: In this paper, a comparison was made to ring-shaped TSVs (i.e., copper ring with silicon core) for stress reduction, and two approaches regarding the way of TSV implementation (before and after wafer bonding/thinning, resp) were discussed, concerning process ability and yield aspects.
Abstract: For considerations of stress reduction HAR-TSVs were only partially filled with copper A comparison was made to ring shaped TSVs (ie copper ring with silicon core) Two approaches regarding the way of TSV implementation (before and after wafer bonding/ thinning, resp) are discussed, concerning process ability and yield aspects Electrical measurement yield 11 MΩ for a single TSV and 76 MΩ for a 4-point TSV-chain (incl RDL)

4 citations


Journal ArticleDOI
TL;DR: In this paper, the magnetic properties of the heterostructures were investigated by magneto-optical Kerr effect spectroscopy and magnetometry, and they were used as model systems for potential spintronic devices.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the interplay between the performance of nitride stress liner technologies and the contact metallization is studied based on computer simulations, and three dimensional models of transistor devices including the contacts have been created for the 32nm and 45nm technology nodes.

2 citations


Journal ArticleDOI
TL;DR: In this paper, the influence of CH"4, NH"3, H"2 and He plasma on properties of porous low-k film and its effects on resisting moisture absorption during CMP and ions penetration from sputtering.

2 citations


Patent
25 Oct 2013
TL;DR: In this article, a device for emitting or detecting electromagnetic radiation (11o, 11i) is described, which comprises a first and a second electrode (14a, 14b) which are connected to one another via an electrically conductive nanostructure (12).
Abstract: The invention describes a device for emitting or detecting electromagnetic radiation (11o, 11i). The apparatus comprises a first and a second electrode (14a, 14b) which are connected to one another via an electrically conductive nanostructure (12). The electrically conductive nanostructure is designed to receive electrons (16) and holes (18) of the first and second electrode or to transport them to the first and the second electrode. The apparatus further comprises a radiation molecule (22) disposed on a peripheral surface of the electrically conductive nanostructure (12). The radiation molecule (22) is configured to receive the electrons and holes, or electromagnetic radiation (11i) and the electromagnetic radiation (11o) to emit at a recombination of electrons taken and recorded holes or based on the received electromagnetic radiation (11i), electrons and holes to emit. The electrically conductive nanostructure (12) is at one of the first or second electrode (14a, 14b) arranged end in the area (26a, 26b) at least partially enclosed a peripheral surface of the electrically conductive nanostructure from the first or second electrode to an electrical contact provide the first or second electrode and the electrically conductive nanostructure.

Patent
24 May 2013
TL;DR: In this article, a method for fixation of a first movable component (4) of a micro-mechanical structural element to a stationary or moving second component (5) of the structural element, where a lateral surface of the first component and a lateral surfaces of the second component face one another, was proposed.
Abstract: The present invention relates to a method for fixation of a first movable component (4) of a micro-mechanical structural element to a stationary or moving second component (5) of the structural element, wherein a lateral surface of the first component and a lateral surface of the second component face one another. In the method, a layer (10) protruding from the lateral surface is produced on a side of one or both components (4, 5) adjoining the lateral surface. The movable first component is moved (4) for fixation against the second component (5) in such a manner that the protruding layer area slides over the side of the first or second component (4, 5) adjoining the lateral side or, in the case of a protruding layer (10) present on both components (4, 5), the protruding layer areas slide one over another such that, due to static friction, the protruding layer area (10) adheres to the component (4, 5) thereunder, or the protruding layer areas adhere to one another. With the proposed method it is possible to subsequently reduce gap widths between a movable structure element and a fixed or movable structure element with little effort.

Patent
25 Oct 2013
TL;DR: In this paper, a Vorrichtung zur Aussendung oder Detektion elektromagnetischer Strahlung (11o; 11i) is described, where Elektronen (16) and Locher (18) aus der erste and eine zweite Elektrode (14a, 14b) are empfangen oder zu der ersten and der zweiten ElektROde zu transportieren.
Abstract: Die Erfindung beschreibt eine Vorrichtung zur Aussendung oder Detektion elektromagnetischer Strahlung (11o; 11i). Die Vorrichtung weist eine erste und eine zweite Elektrode (14a, 14b) auf, die uber eine elektrisch leitfahige Nanostruktur (12) miteinander verbunden sind. Die elektrisch leitfahige Nanostruktur ist ausgebildet, um Elektronen (16) und Locher (18) aus der ersten und zweiten Elektrode zu empfangen oder zu der ersten und der zweiten Elektrode zu transportieren. Die Vorrichtung umfasst ferner ein Strahlungsmolekul (22), das an einer Umfangsflache der elektrisch leitfahigen Nanostruktur (12) angeordnet ist. Das Strahlungsmolekul (22) ist ausgebildet, um Elektronen und Locher oder elektromagnetische Strahlung (11i) aufzunehmen und bei einer Rekombination von aufgenommenen Elektronen und aufgenommenen Lochern die elektromagnetische Strahlung (11o) zu emittieren oder basierend auf der aufgenommenen elektromagnetischen Strahlung (11i) Elektronen und Locher zu emittieren. Die elektrisch leitfahige Nanostruktur (12) ist an einem an der ersten oder zweiten Elektrode (14a, 14b) angeordneten Ende im Bereich (26a, 26b) einer Umfangsflache der elektrisch leitfahigen Nanostruktur zumindest teilweise von der ersten oder zweiten Elektrode umschlossen, um einen elektrischen Kontakt der ersten oder zweiten Elektrode und der elektrisch leitfahigen Nanostruktur bereitzustellen.

Patent
25 Oct 2013
TL;DR: In this article, the authors describe a device for emitting or detecting electromagnetic radiation (11o, 11i), which consists of a first and a second electrode (14a, 14b) which are connected to one another via an electrically conductive nanostructure (12).
Abstract: Die Erfindung beschreibt eine Vorrichtung zur Aussendung oder Detektion elektromagnetischer Strahlung (11o; 11i). The invention describes a device for emitting or detecting electromagnetic radiation (11o, 11i). Die Vorrichtung weist eine erste und eine zweite Elektrode (14a, 14b) auf, die uber eine elektrisch leitfahige Nanostruktur (12) miteinander verbunden sind. The device comprises a first and a second electrode (14a, 14b), which are connected to one another via an electrically conductive nanostructure (12). Die elektrisch leitfahige Nanostruktur ist ausgebildet, um Elektronen (16) und Locher (18) aus der ersten und zweiten Elektrode zu empfangen oder zu der ersten und der zweiten Elektrode zu transportieren. The electrically conductive nanostructure is configured to receive or to transport them to the first and the second electrode, electrons (16) and holes (18) from the first and second electrodes. Die Vorrichtung umfasst ferner ein Strahlungsmolekul (22), das an einer Umfangsflache der elektrisch leitfahigen Nanostruktur (12) angeordnet ist. The apparatus further comprises a radiation molecule (22), which is arranged on a peripheral surface of the electrically conductive nanostructure (12). Das Strahlungsmolekul (22) ist ausgebildet, um Elektronen und Locher oder elektromagnetische Strahlung (11i) aufzunehmen und bei einer Rekombination von aufgenommenen Elektronen und aufgenommenen Lochern die elektromagnetische Strahlung (11o) zu emittieren oder basierend auf der aufgenommenen elektromagnetischen Strahlung (11i) Elektronen und Locher zu emittieren. The radiation molecule (22) is configured to receive the electrons and holes, or electromagnetic radiation (11i) and to emit electromagnetic radiation (11o) at a recombination of electrons taken and recorded holes or based on the received electromagnetic radiation (11i), electrons and holes to emit. Die elektrisch leitfahige Nanostruktur (12) ist an einem an der ersten oder zweiten Elektrode (14a, 14b) angeordneten Ende im Bereich (26a, 26b) einer Umfangsflache der elektrisch leitfahigen Nanostruktur zumindest teilweise von der ersten oder zweiten Elektrode umschlossen, um einen elektrischen Kontakt der ersten oder zweiten Elektrode und der elektrisch leitfahigen Nanostruktur bereitzustellen. The electrically conductive nanostructure (12) is at one of the first or second electrode (14a, 14b) arranged end in the region (26a, 26b) of a peripheral surface of the electrically conductive nanostructure is at least partially enclosed by the first or second electrode to an electric contact provide the first or second electrode and the electrically conductive nanostructure.

Patent
24 May 2013
TL;DR: In this article, the vorliegende erfindung betrifft ein Verfahren zur Fixierung einer ersten beweglichen Komponente eines mikromechanischen Bauelementes an einer oder beider Komponentsen eine uber die Seitenflache uberstehende Schicht erzeugt.
Abstract: Die vorliegende Erfindung betrifft ein Verfahren zur Fixierung einer ersten beweglichen Komponente eines mikromechanischen Bauelementes an einer feststehenden oder beweglichen zweiten Komponente des Bauelementes, wobei sich eine Seitenflache der ersten und eine Seitenflache der zweiten Komponente gegenuberliegen. Bei dem Verfahren wird auf einer an die Seitenflache angrenzenden Seite einer oder beider Komponenten eine uber die Seitenflache uberstehende Schicht erzeugt. Die bewegliche erste Komponente wird zur Fixierung so gegen die zweite Komponente bewegt, dass sich der uberstehende Schichtbereich uber die an die Seitenflache angrenzende Seite der ersten oder zweiten Komponente schiebt oder sich, im Falle einer bei beiden Komponenten vorhandenen uberstehenden Schicht, die uberstehenden Schichtbereiche ubereinander schieben, so dass aufgrund von Adhasion der uberstehende Schichtbereich an der darunter liegenden Komponente oder die uberstehenden Schichtbereiche aneinander haften. Mit dem vorgeschlagenen Verfahren lassen sich nachtraglich Spaltbreiten zwischen einem beweglichen Strukturelement und einem feststehenden oder beweglichen Strukturelement mit geringem Aufwand verringern.