scispace - formally typeset
Search or ask a question

Showing papers by "Stefan E. Schulz published in 2018"


Journal ArticleDOI
TL;DR: This work presents a network simulation method to model the electrical conductivity of graphene-based conductors, and derives an analytical expression, which reproduces the essential features of the network model and enables the systematic optimization of high-performance graphene- based conductor materials.
Abstract: Graphene-based conductors such as films and fibers aim to transfer graphene’s extraordinary properties to the macroscopic scale. They show great potential for large-scale applications, but there is a lack of theoretical models to describe their electrical characteristics. We present a network simulation method to model the electrical conductivity of graphene-based conductors. The method considers all of the relevant microscopic parameters such as graphene flake conductivity, interlayer conductivity, packing density, and flake size. To provide a mathematical framework, we derive an analytical expression, which reproduces the essential features of the network model. We also find good agreement with experimental data. Our results offer production guidelines and enable the systematic optimization of high-performance graphene-based conductor materials. A generalization of the model to any conductor based on two-dimensional materials is straightforward.

26 citations


Journal ArticleDOI
TL;DR: In this article, the synthesis and characterization of bis(ketoiminato)magnesium(II) complexes of composition [Mg(OCR2CH2CHR1NCH2Ch2X)2] (X = NMe2: 3a, R1 = R2 = Me; 3b, R 1 = Me, R 2 = Ph.
Abstract: The synthesis and characterization of bis(ketoiminato)magnesium(II) complexes of composition [Mg(OCR2CH2CHR1NCH2CH2X)2] (X = NMe2: 3a, R1 = R2 = Me; 3b, R1 = Me, R2 = Ph. X = OMe: 3c, R1 = R2 = Me) are reported. Complexes 3a–c are accessible by the reaction of C(O)R2CH2CHR1N(H)CH2CH2X (X = NMe2: 1a, R1 = R2 = Me; 1b, R1 = Me, R2 = Ph. X = OMe: 1c, R1 = R2 = Me) with MgnBu2. The structure of 3b in the solid state was determined by a single crystal X-ray diffraction study, confirming that the Mg(II) ion is hexa-coordinated by two ketoiminato ligands, while each of the latter coordinates with its two N- and one O-donor atom in an octahedral MgN6O2 coordination environment in the OC-6-33 stereo-isomeric form. The thermal behavior of 3a–c was studied by TG and DSC under an atmosphere of Ar and O2 respectively. The respective Me-substituted complexes 3a,c decompose at lower temperatures (3a, 166 °C; 3c, 233 °C) than the phenyl derivative 3b (243 °C). PXRD studies indicate the formation of MgO. Additionally, TG-MS studies were exemplarily carried out for 3a, indicating the release of the ketoiminato ligands. Vapor pressure measurements were conducted at 80 °C, whereby 3a,c possess with 5.6 mbar (3a) and 2.0 mbar (3c) significantly higher volatilities than 3b (0.07 mbar). Complexes 3a–c were used as MOCVD precursors for the deposition of thin MgO films on silicon substrates. It was found that only with 3a,c thin, dense and rather granulated MgO layers of thicknesses between 28–147 nm were produced. The as-deposited MgO layers were characterized by SEM, EDX, and XPS measurements and the thicknesses of the as-deposited layers were measured by Ellipsometry and SEM cross-section images. Apart from magnesium and oxygen a carbon content between 3–4 mol% was determined.

9 citations


Journal ArticleDOI
TL;DR: By applying device passivation with poly(4-vinylpyridine), the impact of CNT bundling on the device performance can be strongly reduced due to increased gate efficiency as well as reduced oxygen and water-induced p-type doping, boosting essential field-effect transistor performance parameters by several orders of magnitude.
Abstract: The electrical transport properties of short-channel transistors based on single-walled carbon nanotubes (CNT) are significantly affected by bundling along with solution processing. We report that especially high off currents of CNT transistors are not only related to the incorporation of metallic CNTs but also to the incorporation of CNT bundles. By applying device passivation with poly(4-vinylpyridine), the impact of CNT bundling on the device performance can be strongly reduced due to increased gate efficiency as well as reduced oxygen and water-induced p-type doping, boosting essential field-effect transistor performance parameters by several orders of magnitude. Moreover, this passivation approach allows the hysteresis and threshold voltage of CNT transistors to be tuned.

6 citations


Journal ArticleDOI
TL;DR: The synthesis of ketoiminato copper(ii) complexes [ Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 and [Cu(OAc)2·H2O] (3) is reported, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced.
Abstract: The synthesis of ketoiminato copper(ii) complexes [Cu(OCRCHC(CH3)NCH2CH2X)(μ-OAc)]2 (X = NMe2: 4a, R = Me; 4b, R = Ph. X = OMe: 5, R = Me) and [Cu(OCRCHCMeNCH2CH2NEt2)(OAc)] (6, R = Me) from RC(O)CHC(CH3)N(H)CH2CH2X (X = NMe2: 1a, R = Me; 1b, R = Ph. X = NEt2: 1c, R = Me. X = OMe: 2, R = Me) and [Cu(OAc)2·H2O] (3) is reported. The molecular solid-state structures of 4-6 were determined by single crystal X-ray diffraction studies, showing that 4a,b and 5 are dimers which are set up by two [{Cu(μ-OAc)L}] (L = ketoiminato ligand) units featuring a square-planar Cu2O2 core with a distorted square-pyramidal geometry at Cu(ii). In contrast, 6 is monomeric with a tridentate-coordinated OCMeCHCMeNCH2CH2NEt2 ligand and a σ-bonded acetate group, thus inducing a square-planar environment around Cu(ii). The thermal behavior of all complexes was studied by TG (Thermogravimetry) and DSC (Differential Scanning Calorimetry) under an atmosphere of Ar and O2. Complex 4b shows the highest first onset temperature at 213 °C (under O2) and 239 °C (Ar). PXRD studies confirmed the formation of CuO under an atmosphere of O2 and Cu/Cu2O under Ar. TG-MS studies, exemplarily carried out with 4a, indicate the elimination of the ketoiminato ligands with detectable fragments such as m/z = 15, 28, 43, 44, 45, and 60 at a temperature above 250 °C. Vapor pressure measurements displayed that 5 shows the highest volatility of 3.6 mbar at 70 °C (for comparison, 4a, 1.4; 4b, 1.3; 6, 0.4 mbar) and hence 4a and 5 were used as MOCVD precursors for Cu/Cu2O deposition on Si/SiO2 at substrate temperatures of 450 °C and 510 °C. The deposition experiments were carried out under an atmosphere of nitrogen as well as oxygen. The as-obtained layers were characterized by SEM, EDX, XPS, and PXRD, showing that with oxygen as the reactive gas a mixture of metallic copper and copper(i) oxide without carbon impurities was formed, while under N2 Cu films with 53-68 mol% C contamination were produced. In a deposition experiment using precursor 5 at 510 °C under N2 a pure copper film was obtained.

4 citations


Journal ArticleDOI
TL;DR: In this article, the number of loading cycles of the Al/YMnO3/Pt resistive switch is larger than 103, which can be further increased to 105 by decreasing the diameter of the top electrode.
Abstract: Polycrystalline YMnO3 thin films sandwiched between an un-patterned bottom electrode (Pt or Pt/Ti) and a circular top electrode (Au or Al) reveal an electroforming-free, unipolar resistive switching. We report YMnO3 resistive switching devices endurance depending on the bottom electrode and the top electrode. The number of loading cycles of the Al/YMnO3/Pt resistive switch is larger than 103. The resistance ratio between the high resistance (OFF) and the low resistance (ON) state is larger than 104, which can be further increased to 105 by decreasing the diameter of the Al top electrode.

4 citations


Journal ArticleDOI
TL;DR: In this article, spin-coated Ln2O3 was used as a gate dielectric for field effect transistors (FETs) with an on/off ratio of more than 4 orders of magnitude without considerable leakage currents.

3 citations


Proceedings ArticleDOI
15 Apr 2018
TL;DR: In this paper, the authors address fatigue characterisation of thin Cu films on silicon under typical processing conditions on simple and inexpensive but industry-grade samples, and use custom built test stands to handle those specimens appropriately within a specimen-centred approach.
Abstract: Thin metal layers, especially those made of copper, are omnipresent in today's packaging applications as e.g. RDL structures, conductor traces on flexible and stretchable substrates, chip finishes or terminal metallisation, serving electrical, thermal or mechanical purposes. During operation, thermo-mechanical stress will cause failures in the Cu layers and interfaces over time. As Cu is very process and size dependent, its resistance to fatigue failure needs to be characterised with samples which have undergone identical processing steps as those in the real application. For that purpose, simple specimens and fast testing routines are necessary, some of which may need special loading stages for varying the load variables of interest such as stress amplitude and temperature. This paper addresses fatigue characterisation of thin Cu films on silicon under typical processing conditions on simple and inexpensive but industry-grade samples. Along with them, custom built test stands have been used to handle those specimens appropriately within a specimen-centred approach.

3 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of bimetallic catalyst composition, layer stack thickness configuration as well as CCVD process parameters on the composition of grown carbon nanotubes (sc-SWCNTs) was investigated.

2 citations