scispace - formally typeset
Search or ask a question

Showing papers by "Taner Yildirim published in 2020"


Journal ArticleDOI
17 Apr 2020-Science
TL;DR: The simulation-motivated synthesis of ultraporous metal–organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe), achieves high gravimetric and volumetric uptake and delivery of methane and hydrogen and exhibits one of the best deliverable hydrogen capacities.
Abstract: A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas—alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal–organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer−Emmett−Teller (BET) area of 7310 m2 g−1 and a volumetric BET area of 2060 m2 cm−3 while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g−1) with an uptake of 0.66 g g−1 [262 cm3 (standard temperature and pressure, STP) cm−3] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g−1 [238 cm3 (STP) cm−3] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter−1) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).

334 citations


Journal ArticleDOI
TL;DR: Guided by these empirical equations, a highly porous Zr-MOF NPF-200 (NPF: Nebraska Porous Framework) is examined to possess outstanding hydrogen total adsorption capacity and record high volumetric working capacity.
Abstract: Metal-organic frameworks (MOFs) are promising materials for onboard hydrogen storage thanks to the tunable pore size, pore volume, and pore geometry. In consideration of pore structures, the correlation between the pore volume and hydrogen storage capacity is examined and two empirical equations are rationalized to predict the hydrogen storage capacity of MOFs with different pore geometries. The total hydrogen adsorption under 100 bar and 77 K is predicted as ntot = 0.085× Vp - 0.013× Vp 2 for cage-type MOFs and ntot = 0.076× Vp - 0.011× Vp 2 for channel-type MOFs, where Vp is the pore volume of corresponding MOFs. The predictions by these empirical equations are validated by several MOFs with an average deviation of 5.4%. Compared with a previous equation for activated carbon materials, the empirical equations demonstrate superior accuracy especially for MOFs with high surface area (i.e., SBET over ≈3000 m2 g-1 ). Guided by these empirical equations, a highly porous Zr-MOF NPF-200 (NPF: Nebraska Porous Framework) is examined to possess outstanding hydrogen total adsorption capacity (65.7 mmol g-1 ) at 77 K and record high volumetric working capacity of 37.2 g L-1 between 100 and 5 bar at 77 K.

89 citations


Journal ArticleDOI
TL;DR: A vertical 2D layered FAL structure has excellent gas uptake performance under both low and high pressures, and also a high iodine uptake capacity with unusually fast kinetics, the fastest among reported porous organic materials to date.
Abstract: Planar two-dimensional (2D) layered materials such as graphene, metal-organic frameworks, and covalent-organic frameworks are attracting enormous interest in the scientific community because of their unique properties and potential applications. One common feature of these materials is that their building blocks (monomers) are flat and lie in planar 2D structures, with interlayer π–π stacking, parallel to the stacking direction. Due to layer-to-layer confinement, their segmental motion is very restricted, which affects their sorption/desorption kinetics when used as sorbent materials. Here, to minimize this confinement, a vertical 2D layered material was designed and synthesized, with a robust fused aromatic ladder (FAL) structure. Because of its unique structural nature, the vertical 2D layered FAL structure has excellent gas uptake performance under both low and high pressures, and also a high iodine (I2) uptake capacity with unusually fast kinetics, the fastest among reported porous organic materials to date. Stacking of planar layers composed of flat building blocks in two dimensional materials results in restriction of segmental motion which affects their typical properties, such as sorption or desorption. Here, the authors minimize this confinement using a vertically-stacked fused aromatic ladder structure and demonstrate excellent gas uptake under low and high pressure.

29 citations


Journal ArticleDOI
TL;DR: A microporous MOF FJU-101 with open naphthalene diimide functional groups for room temperature (RT) high methane storage with enhanced methane uptake is reported.
Abstract: We reported a microporous MOF FJU-101 with open naphthalene diimide functional groups for room temperature (RT) high methane storage. At RT and 65 bar, the total volumetric CH4 storage capacity of 212 cm3 (STP) cm−3 of FJU-101a is significantly higher than those of the isoreticular MFM-130a and UTSA-40a. The enhanced methane uptake in FJU-101a is attributed to the polar carbonyl sites, which can generate strong electrostatic interactions with CH4 molecules.

27 citations


Journal ArticleDOI
TL;DR: The thermogenic transformation of kerogen into hydrocarbons accompanies the development of a pore network within the kerogen that serves as gas storage locations both in pore space and the surface as mentioned in this paper.
Abstract: The thermogenic transformation of kerogen into hydrocarbons accompanies the development of a pore network within the kerogen that serves as gas storage locations both in pore space and the surface ...

6 citations


Journal ArticleDOI
07 Sep 2020
TL;DR: In this article, it was shown that a critical pressure range is characterized by distinct coherent quantum oscillations, indicating that the difference in topology between topologically non-vendorial Td and T’ phases gives rise to an emergent electronic structure: a network of topological interfaces.
Abstract: Layered transition metal chalcogenides are promising hosts of electronic Weyl nodes and topological superconductivity. MoTe2 is a striking example that harbors both noncentrosymmetric Td and centrosymmetric T’ phases, both of which have been identified as topologically nontrivial. Applied pressure tunes the structural transition separating these phases to zero temperature, stabilizing a mixed Td–T’ matrix that entails a network of interfaces between the two nontrivial topological phases. Here, we show that this critical pressure range is characterized by distinct coherent quantum oscillations, indicating that the difference in topology between topologically nonvtrivial Td and T’ phases gives rise to an emergent electronic structure: a network of topological interfaces. A rare combination of topologically nontrivial electronic structures and locked-in transformation barriers leads to this counterintuitive situation, wherein quantum oscillations can be observed in a structurally inhomogeneous material. These results further open the possibility of stabilizing multiple topological phases coexisting with superconductivity.

5 citations