scispace - formally typeset
Search or ask a question

Showing papers by "Toshiaki Ohteki published in 1998"


Journal ArticleDOI
01 Jan 1998-Immunity
TL;DR: Data indicate that NF-ATc1 plays roles in the development of T lymphocytes and in the differentiation of the Th2 response, as demonstrated by a decrease in IL-4 and IL-6 production.

341 citations


Journal ArticleDOI
TL;DR: Analysis of interferon regulatory factor 1–deficient mice indicates that IRF-1 regulates IL-15 gene expression, which may control the development of NK1+T cells, NK cells, and CD8-α/α+ IELs.
Abstract: In contrast to conventional T cells, natural killer (NK) 1.1+ T cell receptor (TCR)-α/β+ (NK1+T) cells, NK cells, and intestinal intraepithelial lymphocytes (IELs) bearing CD8-α/α chains constitutively express the interleukin (IL)-2 receptor (R)β/15Rβ chain. Recent studies have indicated that IL-2Rβ/15Rβ chain is required for the development of these lymphocyte subsets, outlining the importance of IL-15. In this study, we investigated the development of these lymphocyte subsets in interferon regulatory factor 1–deficient (IRF-1−/−) mice. Surprisingly, all of these lymphocyte subsets were severely reduced in IRF-1−/− mice. Within CD8-α/α+ intestinal IEL subset, TCR-γ/δ+ cells and TCR-α/β+ cells were equally affected by IRF gene disruption. In contrast to intestinal TCR-γ/δ+ cells, thymic TCR-γ/δ+ cells developed normally in IRF-1−/− mice. Northern blot analysis further revealed that the induction of IL-15 messenger RNA was impaired in IRF-1−/− bone marrow cells, and the recovery of these lymphocyte subsets was observed when IRF-1−/− cells were cultured with IL-15 in vitro. These data indicate that IRF-1 regulates IL-15 gene expression, which may control the development of NK1+T cells, NK cells, and CD8-α/α+ IELs.

190 citations


Journal Article
TL;DR: The results demonstrate that there is a direct correlation: peptides that induce strong TCR down-regulation are most efficient at mediating negative selection, whereas peptide that induce suboptimal TCR internalization are more efficient at triggering positive selection.
Abstract: Recent evidence suggests that TCR down-regulation directly reflects the number of TCRs that have engaged MHC/peptide ligand complexes. Here, we examined the influence of defined peptides on thymic selection based on their ability to induce differential TCR internalization. Our results demonstrate that there is a direct correlation: peptides that induce strong TCR down-regulation are most efficient at mediating negative selection, whereas peptides that induce suboptimal TCR internalization are more efficient at triggering positive selection. As a consequence of suboptimal TCR internalization, a proportion of TCR complexes that remain on the cell surface may be able to relay continual signals required for survival and differentiation. In addition, we show that the magnitude of Ca2+ influx set by these peptides reflects the hierarchy of TCR down-regulation and correlates with positive vs negative selection of transgenic thymocytes. Together, our data suggest that T cell selection is mediated by differing intensities of the same TCR-mediated signal, rather than by distinct signals.

53 citations