scispace - formally typeset
Search or ask a question

Showing papers by "Xianfeng Wang published in 2016"


Journal ArticleDOI
30 Jun 2016-Nature
TL;DR: Observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’.
Abstract: Oxygen isotope records from Chinese caves characterize changes in both the Asian monsoon and global climate. Here, using our new speleothem data, we extend the Chinese record to cover the full uranium/thorium dating range, that is, the past 640,000 years. The record’s length and temporal precision allow us to test the idea that insolation changes caused by the Earth’s precession drove the terminations of each of the last seven ice ages as well as the millennia-long intervals of reduced monsoon rainfall associated with each of the terminations. On the basis of our record’s timing, the terminations are separated by four or five precession cycles, supporting the idea that the ‘100,000-year’ ice age cycle is an average of discrete numbers of precession cycles. Furthermore, the suborbital component of monsoon rainfall variability exhibits power in both the precession and obliquity bands, and is nearly in anti-phase with summer boreal insolation. These observations indicate that insolation, in part, sets the pace of the occurrence of millennial-scale events, including those associated with terminations and ‘unfinished terminations’. Records of the Asian monsoon have been extended to 640,000 years ago, and confirm both that the 100,000-year ice age cycle results from integral numbers of precessional cycles and that insolation influences the pacing of major millennial-scale climate events. Prior records of the Asian monsoon have revealed cyclic variations over hundreds of thousands of years, probably driven by variations in insolation caused by the precession of Earth's orbit. Hai Cheng and colleagues now provide a speleothem record from Chinese cave samples that extends earlier records to 640,000 years ago, close to the maximum age possible with uranium/thorium dating. This spectacular record confirms that the characteristic '100,000-year' ice age cycle corresponds to an integral number (four or five) of precession cycles, and that insolation influences millennial-scale variations in monsoon strength.

879 citations



Journal ArticleDOI
TL;DR: This article used the B/Ca ratios of benthic foraminifera from several sites across the Atlantic Ocean to reconstruct changes in the carbonate ion concentration and hence the carbon inventory of the deep Atlantic across this transition.
Abstract: Atmospheric CO2 concentrations declined markedly about 70,000 years ago, when the Earth’s climate descended into the last glaciation. Much of the carbon removed from the atmosphere has been suspected to have entered the deep oceans, but evidence for increased carbon storage remains elusive. Here we use the B/Ca ratios of benthic foraminifera from several sites across the Atlantic Ocean to reconstruct changes in the carbonate ion concentration and hence the carbon inventory of the deep Atlantic across this transition. We find that deep Atlantic carbonate ion concentration declined by around 25 μmol kg−1 between ~80,000 and 65,000 years ago. This drop implies that the deep Atlantic carbon inventory increased by at least 50 Gt around the same time as the amount of atmospheric carbon dropped by about 60 Gt. From a comparison with proxy records of deep circulation and climate model simulations, we infer that the carbon sequestration coincided with a shoaling of the Atlantic meridional overturning circulation. We thus conclude that changes in the Atlantic Ocean circulation may have played an important role in reductions of atmospheric CO2 concentrations during the last glaciation, by increasing the carbon storage in the deep Atlantic.

66 citations


Journal ArticleDOI
TL;DR: It is found that the weakest monsoon closely associated with the warmest Antarctic event always occurred during the Terminations, which suggests that millennial-scale events play a key role in driving the deglaciation through positive feedbacks associated with enhanced upwelling and increasing CO2.
Abstract: There is increasing evidence that millennial-scale climate variability played an active role on orbital-scale climate changes, but the mechanism for this remains unclear. A (230)Th-dated stalagmite δ(18)O record between 88 and 22 thousand years (ka) ago from Yongxing Cave in central China characterizes changes in Asian monsoon (AM) strength. After removing the 65°N insolation signal from our record, the δ(18)O residue is strongly anti-phased with Antarctic temperature variability on sub-orbital timescales during the Marine Isotope Stage (MIS) 3. Furthermore, once the ice volume signal from Antarctic ice core records were removed and extrapolated back to the last two glacial-interglacial cycles, we observe a linear relationship for both short- and long-duration events between Asian and Antarctic climate changes. This provides the robust evidence of a link between northern and southern hemisphere climates that operates through changes in atmospheric circulation. We find that the weakest monsoon closely associated with the warmest Antarctic event always occurred during the Terminations. This finding, along with similar shifts in the opal flux record, suggests that millennial-scale events play a key role in driving the deglaciation through positive feedbacks associated with enhanced upwelling and increasing CO2.

57 citations


Journal ArticleDOI
13 Apr 2016
TL;DR: In this paper, the authors measured the Hg isotope composition of PBM in PM10 samples collected from three locations, a traffic junction, a waste incineration site and an industrial site in Kolkata, the largest metropolis in Eastern India.
Abstract: The particle bound mercury (PBM) in urban-industrial areas is mainly of anthropogenic origin, and is derived from two principal sources: Hg bound to particulate matter directly emitted by industries and power generation plants, and adsorption of gaseous elemental mercury (GEM) and gaseous oxidized mercury (GOM) on air particulates from gas or aqueous phases. Here, we measured the Hg isotope composition of PBM in PM10 samples collected from three locations, a traffic junction, a waste incineration site and an industrial site in Kolkata, the largest metropolis in Eastern India. Sampling was carried out in winter and monsoon seasons between 2013–2015. The objective was to understand whether the isotope composition of the PBM represents source composition. The PBM collected from the waste burning site showed little mass independent fractionation (MIF) (Δ199Hg = + 0.12 to -0.11‰), similar to the signature in liquid Hg and Hg ores around the world with no seasonal variations. Samples from the industrial site showed mostly negative MDF and MIF (δ202Hg = -1.34 to -3.48 ‰ and Δ199Hg = + 0.01 to -0.31‰). The MDF is consistent with PBM generated by coal combustion however, the MIF is 0.15‰ more negative compared to the Hg isotope ratios in Indian coals. The traffic junction PBM is probably not produced in situ, but has travelled some distances from nearby industrial sources. The longer residence time of this PBM in the atmosphere has resulted in-aerosol aqueous photoreduction. Thus, the MIF displays a larger range (Δ199Hg = + 0.33 to -0.30‰) compared to the signature from the other sites and with more positive values in the humid monsoon season. Different Hg isotopic signature of PBM in the three different sampling locations within the same city indicates that both source and post emission atmospheric transformations play important roles in determining isotopic signature of PBM.

44 citations


Journal ArticleDOI
TL;DR: Pd concentrations were lower in the monsoon compared to winter while Pd concentrations increased during monsoon and Rh stayed relatively unaffected across seasons, indicating dominance of Pd-containing exhaust converters.
Abstract: This study investigates platinum group elements (PGEs) in the breathable (PM10) and respirable (PM2.5) fractions of air particulates from a heavily polluted Indian metro city. The samples were collected from traffic junctions at the heart of the city and industrial sites in the suburbs during winter and monsoon seasons of 2013–2014. PGE concentrations were determined by inductively coupled plasma-mass spectrometry (ICP-MS). The PGE concentrations in the samples from traffic junctions are within the range of 2.7–111 ng/m3 for Pd, 0.86–12.3 ng/m3 for Pt and 0.09–3.13 ng/m3 for Rh, and from industrial sites are within the range of 3.12–32.3 ng/m3 for Pd, 0.73–7.39 ng/m3 for Pt and 0.1–0.69 ng/m3 for Rh. Pt concentrations were lower in the monsoon compared to winter while Pd concentrations increased during monsoon and Rh stayed relatively unaffected across seasons. For all seasons and locations, concentrations of Pd > Pt > Rh, indicating dominance of Pd-containing exhaust converters. Most of the PGEs were concentrated in the PM2.5 fraction. A strong correlation (R ≥ 0.62) between the PGEs from traffic junction indicates a common emission source viz. catalytic converters, whereas a moderate to weak correlation (R ≤ 0.5) from the industrial sites indicate mixing of different sources like coal, raw materials used in the factories and automobile. A wider range of Pt/Pd, Pt/Rh and Pd/Rh ratios measured in the traffic junction possibly hint towards varying proportions of PGEs used for catalyst productions in numerous rising and established car brands.

15 citations