scispace - formally typeset
Search or ask a question
Institution

University of Innsbruck

EducationInnsbruck, Austria
About: University of Innsbruck is a education organization based out in Innsbruck, Austria. It is known for research contribution in the topics: Population & Context (language use). The organization has 13673 authors who have published 28988 publications receiving 1047719 citations.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
11 Dec 1997-Nature
TL;DR: In this article, the authors demonstrated the feasibility of quantum teleportation over arbitrary distances of the state of a quantum system by using a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon.
Abstract: Quantum teleportation — the transmission and reconstruction over arbitrary distances of the state of a quantum system — is demonstrated experimentally. During teleportation, an initial photon which carries the polarization that is to be transferred and one of a pair of entangled photons are subjected to a measurement such that the second photon of the entangled pair acquires the polarization of the initial photon. This latter photon can be arbitrarily far away from the initial one. Quantum teleportation will be a critical ingredient for quantum computation networks.

4,232 citations

Journal ArticleDOI
22 Nov 2001-Nature
TL;DR: It is shown that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.
Abstract: Quantum communication holds promise for absolutely secure transmission of secret messages and the faithful transfer of unknown quantum states. Photonic channels appear to be very attractive for the physical implementation of quantum communication. However, owing to losses and decoherence in the channel, the communication fidelity decreases exponentially with the channel length. Here we describe a scheme that allows the implementation of robust quantum communication over long lossy channels. The scheme involves laser manipulation of atomic ensembles, beam splitters, and single-photon detectors with moderate efficiencies, and is therefore compatible with current experimental technology. We show that the communication efficiency scales polynomially with the channel length, and hence the scheme should be operable over very long distances.

3,126 citations

Journal ArticleDOI
TL;DR: This method allows by simple means the generation of high numbers of murine DC with very low B cell or granulocyte contaminations, which will be valuable to study DC biology notably at the molecular level.

2,935 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the Greenberger-Horne-Zeilinger state and a W state retain maximally bipartite entanglement when any one of the three qubits is traced out.
Abstract: Invertible local transformations of a multipartite system are used to define equivalence classes in the set of entangled states. This classification concerns the entanglement properties of a single copy of the state. Accordingly, we say that two states have the same kind of entanglement if both of them can be obtained from the other by means of local operations and classical communication (LOCC) with nonzero probability. When applied to pure states of a three-qubit system, this approach reveals the existence of two inequivalent kinds of genuine tripartite entanglement, for which the Greenberger-Horne-Zeilinger state and a W state appear as remarkable representatives. In particular, we show that the W state retains maximally bipartite entanglement when any one of the three qubits is traced out. We generalize our results both to the case of higher-dimensional subsystems and also to more than three subsystems, for all of which we show that, typically, two randomly chosen pure states cannot be converted into each other by means of LOCC, not even with a small probability of success.

2,918 citations


Authors

Showing all 13978 results

NameH-indexPapersCitations
Eric Boerwinkle1831321170971
Ralph M. Steinman171453121518
Hans Lassmann15572479933
Josef M. Penninger154700107295
Olaf Reimer14471674359
A. Reimer14150967489
Ming T. Tsuang14088573865
Peter Zoller13473476093
Emmerich Kneringer129102180898
Werner Poewe12881271591
Peter M. Elias12758149825
Armin Michael Nairz12789875990
Anton Zeilinger12563171013
Pierre Petroff121138176131
Rupert Timpl11841040457
Network Information
Related Institutions (5)
Ludwig Maximilian University of Munich
161.5K papers, 5.7M citations

91% related

University of California, Irvine
113.6K papers, 5.5M citations

91% related

Utrecht University
139.3K papers, 6.2M citations

91% related

University of Colorado Boulder
115.1K papers, 5.3M citations

91% related

University of California, San Diego
204.5K papers, 12.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023236
2022440
20211,688
20201,533
20191,476