scispace - formally typeset
Search or ask a question

Showing papers by "Xiaohua Wu published in 2016"


Journal ArticleDOI
TL;DR: In this paper, a stochastic energy management of a smart home with PEV (plug-in electric vehicle) energy storage and photovoltaic (PV) array is investigated.

289 citations


Journal ArticleDOI
TL;DR: In this article, high-emissive alloyed CdSeS quantum dots (QDs) with a gradient structure exhibiting photoluminescence (PL) peaking at 490 nm and an absolute quantum yield (QY) of 79% (in toluene with excitation wavelength of 430 nm) were designed and synthesized.
Abstract: Highly emissive alloyed CdSeS quantum dots (QDs) with a gradient structure exhibiting photoluminescence (PL) peaking at 490 nm and an absolute quantum yield (QY) of 79% (in toluene with excitation wavelength of 430 nm) were designed and synthesized. The cyan-blue emitters were synthesized at 180 °C in 1-octadecene (ODE) with cadmium oleate (Cd(OA)2), tri-n-octylphosphine selenide (TOPSe), and tri-n-octylphosphine sulfide (TOPS) as the Cd, Se, and S precursors, respectively; importantly, a commercial secondary phosphine, diphenyl phosphine (DPP or HPPh2), was used as a beneficial additive. Also, our high Cd/(Se + S) feed molar ratio aids in shifting the equilibrium of the chalcogenide exchange, TOPE + HPPh2 ⇔ TOP + E═PPh2H, to the right. Density functional theory (DFT) calculations suggest that the formation of Se═PPh2H proceeds faster than that of S═PPh2H, which supports our high S/Se feed molar ratio used to synthesize the bright gradient-alloyed CdSeS QDs. Compositional and structural characterization w...

45 citations


Journal ArticleDOI
TL;DR: This is the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant and it is shown that vsiRNAs from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus are compared.
Abstract: RNA silencing is an evolutionarily conserved antiviral mechanism, through which virus-derived small interfering RNAs (vsiRNAs) playing roles in host antiviral defence are produced in virus-infected plant. Deep sequencing technology has revolutionized the study on the interaction between virus and plant host through the analysis of vsiRNAs profile. However, comparison of vsiRNA profiles in different tissues from a same host plant has been rarely reported. In this study, the profiles of virus-derived small interfering RNAs (vsiRNAs) from leaves and fruits of Lagenaria siceraria plants infected with Cucumber green mottle mosaic virus (CGMMV) were comprehensively characterized and compared. Many more vsiRNAs were present in infected leaves than in fruits. vsiRNAs from both leaves and fruits were mostly 21- and 22-nt in size as previously described in other virus-infected plants. Interestingly, vsiRNAs were predominantly produced from the viral positive strand RNAs in infected leaves, whereas in infected fruits they were derived equally from the positive and negative strands. Many leaf-specific positive vsiRNAs with lengths of 21-nt (2,058) or 22-nt (3,996) were identified but only six (21-nt) and one (22-nt) positive vsiRNAs were found to be specific to fruits. vsiRNAs hotspots were only present in the 5’-terminal and 3’-terminal of viral positive strand in fruits, while multiple hotspots were identified in leaves. Differences in GC content and 5'-terminal nucleotide of vsiRNAs were also observed in the two organs. To our knowledge, this provides the first high-resolution comparison of vsiRNA profiles between different tissues of the same host plant.

23 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 degrees C to 572 degrees C.
Abstract: We have used time-resolved terahertz spectroscopy to study microscopic photoconductivity and ultrafast photoexcited carrier dynamics in thin, pure, non-hydrogenated silicon films grown by molecular beam epitaxy on quartz substrates at temperatures ranging from 335 degrees C to 572 degrees C. By controlling the growth temperature, thin silicon films ranging from completely amorphous to polycrystalline with minimal amorphous phase can be achieved. Film morphology, in turn, determines its photoconductive properties: in the amorphous phase, carriers are trapped in bandtail states on sub-picosecond time scales, while the carriers excited in crystalline grains remain free for tens of picoseconds. We also find that in polycrystalline silicon the photoexcited carrier mobility is carrier-density-dependent, with higher carrier densities mitigating the effects of grain boundaries on inter-grain transport. In a film grown at the highest temperature of 572 degrees C, the morphology changes along the growth direction from polycrystalline with needles of single crystals in the bulk of the film to small crystallites interspersed with amorphous silicon at the top of the film. Depth profiling using different excitation wavelengths shows corresponding differences in the photoconductivity: the photoexcited carrier lifetime and mobility are higher in the first 100-150 nm from the substrate, suggesting that thinner, low-temperature grown polycrystalline silicon films are preferable for photovoltaic applications.

22 citations


Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate that axial Si/SiGe nanowire (NW) heterojunctions with a Si/Ge NW diameter in the range 50-120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition.
Abstract: Fast optical interconnects together with an associated light emitter that are both compatible with conventional Si-based complementary metal-oxide- semiconductor (CMOS) integrated circuit technology is an unavoidable requirement for the next-generation microprocessors and computers. Self-assembled Si/Si1-xGex nanostructures, which can emit light at wavelengths within the important optical communication wavelength range of 1.3 – 1.55 μm, are already compatible with standard CMOS practices. However, the expected long carrier radiative lifetimes observed to date in Si and Si/Si1-xGex nanostructures have prevented the attainment of efficient light-emitting devices including the desired lasers. Thus, the engineering of Si/Si1-xGex heterostructures having a controlled composition and sharp interfaces is crucial for producing the requisite fast and efficient photoluminescence (PL) at energies in the range 0.8-0.9 eV. In this paper we assess how the nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in three dimensions (corresponding to the case of quantum dots), two dimensions (corresponding to quantum wires), and one dimension (corresponding to quantum wells). The interface sharpness is influenced by many factors such as growth conditions, strain, and thermal processing, which in practice can make it difficult to attain the ideal structures required. This is certainly the case for nanostructure confinement in one dimension. However, we demonstrate that axial Si/Ge nanowire (NW) heterojunctions (HJs) with a Si/Ge NW diameter in the range 50 – 120 nm produce a clear PL signal associated with band-to-band electron-hole recombination at the NW HJ that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, the experiments outlined here show that two quite different Si1-xGex nanostructures incorporated into a Si0.6Ge0.4 wavy superlattice structure display PL of high intensity while exhibiting a characteristic decay time that is up to 1000 times shorter than that found in conventional Si/SiGe nanostructures. The non-exponential PL decay found experimentally in Si/SiGe nanostructures can be interpreted as resulting from variations in the separation distance between electrons and holes at the Si/SiGe heterointerface. The results demonstrate that a sharp Si/SiGe heterointerface acts to reduce the carrier radiative recombination lifetime and increase the PL quantum

15 citations


Journal ArticleDOI
TL;DR: In this paper, the structural evolution of the transitional high-speed planar wake is studied, and the relative Mach number of the laminar base flow modifies the characteristic length scale defined by the most unstable linear mode and the domain of influence of the structures within the staggered two-dimensional vortex array.
Abstract: The compressibility effects on the structural evolution of the transitional high-speed planar wake are studied. The relative Mach number ( ) of the laminar base flow modifies two fundamental features of planar wake transition: (i) the characteristic length scale defined by the most unstable linear mode; and (ii) the domain of influence of the structures within the staggered two-dimensional vortex array. Linear stability results reveal a reduced growth (approximately 30 % reduction up to ) and a quasilinear increase of the wavelength of the most unstable, two-dimensional instability mode (approximately 20 % longer over the same range) with increasing . The primary wavelength defines the length scale imposed on the emerging transitional structures; naturally, a longer wavelength results in rollers with a greater streamwise separation and hence also larger circulation. A reduction of the growth rate and an increase of the principal wavelength results in a greater ellipticity of the emerging rollers. Compressibility effects also modify the domain of influence of the transitional structures through an increased cross-wake and inhibited streamwise communication as characteristic paths between rollers are deflected due to local gradients. The reduced streamwise domain of influence impedes roller pairing and, for a sufficiently large relative , pairing is completely suppressed. Thus, we observe an increased two-dimensionality with increasing Mach number: directly contrasting the increasing three-dimensional effects in high-speed mixing layers. Temporally evolving direct numerical simulations conducted at and 2.0, for Reynolds numbers up to 3000, support the physical insight gained from linear stability and vortex dynamics studies.

14 citations


Journal ArticleDOI
TL;DR: Isobaric tags for relative and absolute quantitation (iTRAQ) technique-based proteomic analyses were conducted between various scion-rootstock combinations of bottle gourd and demonstrated that effects of grafting wound and hetero-grafting per se were readily distinguishable at the proteome level.

8 citations


Journal ArticleDOI
19 Aug 2016
TL;DR: In this article, the authors show that two SiGe nanostructures incorporated into a Si0.6Ge0.4 wavy structure exhibit an intense PL signal with a characteristic nonexponential decay time that is remarkably shorter (as much as 1000 times) than that found in conventional Si/SiGe nanobased structures.
Abstract: The nature of the interfaces between SiGe nanostructures and Si in heterostructures strongly affects carrier mobility and recombination for physical confinement in one, two, and three dimensions. The interface sharpness is influenced by many factors including growth conditions, strain, and thermal processing, which can make it difficult to attain the desired structures. This is certainly the case for nanostructure confinement in one dimension. However, axial Si/Ge nanowire heterojunctions with a Si/Ge nanowire diameter in the range 50–120 nm produce a strong photoluminescence signal associated with band-to-band electron-hole recombination at the nanowire heterojunction that is attributed to a specific interfacial SiGe alloy composition. For three-dimensional confinement, experiments show that two quite different SiGe nanostructures incorporated into a Si0.6Ge0.4 wavy structure exhibit an intense PL signal with a characteristic non-exponential decay time that is remarkably shorter (as much as 1000 times) than that found in conventional Si/SiGe nanostructures.

3 citations



Proceedings ArticleDOI
11 Jul 2016
TL;DR: In this article, the growth of site selected InP nanowires is discussed, focussing on those relevant to quantum information processing, and a route to integration into planar optical circuits is discussed.
Abstract: Key aspects of the growth of site selected InP nanowires will be discussed, focussing on those relevant to quantum information processing. Parameters including high brightness, narrow linewidth and single photon purity, and a route to integration into planar optical circuits will be discussed.

1 citations