scispace - formally typeset
Search or ask a question
Institution

Alibaba Group

CompanyHangzhou, China
About: Alibaba Group is a company organization based out in Hangzhou, China. It is known for research contribution in the topics: Computer science & Terminal (electronics). The organization has 6810 authors who have published 7389 publications receiving 55653 citations. The organization is also known as: Alibaba Group Holding Limited & Alibaba Group (Cayman Islands).


Papers
More filters
Book ChapterDOI
08 Sep 2018
TL;DR: This work proposes an adversarial network for Hard Triplet Generation (HTG) to optimize the network ability in distinguishing similar examples of different categories as well as grouping varied examples of the same categories.
Abstract: While deep neural networks have demonstrated competitive results for many visual recognition and image retrieval tasks, the major challenge lies in distinguishing similar images from different categories (i.e., hard negative examples) while clustering images with large variations from the same category (i.e., hard positive examples). The current state-of-the-art is to mine the most hard triplet examples from the mini-batch to train the network. However, mining-based methods tend to look into these triplets that are hard in terms of the current estimated network, rather than deliberately generating those hard triplets that really matter in globally optimizing the network. For this purpose, we propose an adversarial network for Hard Triplet Generation (HTG) to optimize the network ability in distinguishing similar examples of different categories as well as grouping varied examples of the same categories. We evaluate our method on the real-world challenging datasets, such as CUB200-2011, CARS196, DeepFashion and VehicleID datasets, and show that our method outperforms the state-of-the-art methods significantly.

116 citations

Proceedings ArticleDOI
01 Oct 2017
TL;DR: This paper introduces a language CNN model which is suitable for statistical language modeling tasks and shows competitive performance in image captioning, and is competitive with the state-of-the-art methods.
Abstract: Language models based on recurrent neural networks have dominated recent image caption generation tasks. In this paper, we introduce a language CNN model which is suitable for statistical language modeling tasks and shows competitive performance in image captioning. In contrast to previous models which predict next word based on one previous word and hidden state, our language CNN is fed with all the previous words and can model the long-range dependencies in history words, which are critical for image captioning. The effectiveness of our approach is validated on two datasets: Flickr30K and MS COCO. Our extensive experimental results show that our method outperforms the vanilla recurrent neural network based language models and is competitive with the state-of-the-art methods.

116 citations

Posted Content
TL;DR: In this paper, the authors focus on compressing and accelerating deep models with network weights represented by very small numbers of bits, referred to as extremely low bit neural network, and model this problem as a discretely constrained optimization problem.
Abstract: Although deep learning models are highly effective for various learning tasks, their high computational costs prohibit the deployment to scenarios where either memory or computational resources are limited. In this paper, we focus on compressing and accelerating deep models with network weights represented by very small numbers of bits, referred to as extremely low bit neural network. We model this problem as a discretely constrained optimization problem. Borrowing the idea from Alternating Direction Method of Multipliers (ADMM), we decouple the continuous parameters from the discrete constraints of network, and cast the original hard problem into several subproblems. We propose to solve these subproblems using extragradient and iterative quantization algorithms that lead to considerably faster convergency compared to conventional optimization methods. Extensive experiments on image recognition and object detection verify that the proposed algorithm is more effective than state-of-the-art approaches when coming to extremely low bit neural network.

115 citations

Proceedings ArticleDOI
15 Oct 2018
TL;DR: Semantic Human Matting (SHM) is the first algorithm that learns to jointly fit both semantic information and high quality details with deep networks and achieves comparable results with state-of-the-art interactive matting methods.
Abstract: Human matting, high quality extraction of humans from natural images, is crucial for a wide variety of applications. Since the matting problem is severely under-constrained, most previous methods require user interactions to take user designated trimaps or scribbles as constraints. This user-in-the-loop nature makes them difficult to be applied to large scale data or time-sensitive scenarios. In this paper, instead of using explicit user input constraints, we employ implicit semantic constraints learned from data and propose an automatic human matting algorithm Semantic Human Matting(SHM). SHM is the first algorithm that learns to jointly fit both semantic information and high quality details with deep networks. In practice, simultaneously learning both coarse semantics and fine details is challenging. We propose a novel fusion strategy which naturally gives a probabilistic estimation of the alpha matte. We also construct a very large dataset with high quality annotations consisting of 35,513 unique foregrounds to facilitate the learning and evaluation of human matting. Extensive experiments on this dataset and plenty of real images show that SHM achieves comparable results with state-of-the-art interactive matting methods.

115 citations

Proceedings ArticleDOI
01 Oct 2019
TL;DR: The Contrast-based Localization EvaluAtioN Network (CleanNet) is proposed with the new action proposal evaluator, which provides pseudo-supervision by leveraging the temporal contrast in snippet-level action classification predictions, and is an integral part of CleanNet which enables end-to-end training.
Abstract: Weakly-supervised temporal action localization (WS-TAL) is a promising but challenging task with only video-level action categorical labels available during training. Without requiring temporal action boundary annotations in training data, WS-TAL could possibly exploit automatically retrieved video tags as video-level labels. However, such coarse video-level supervision inevitably incurs confusions, especially in untrimmed videos containing multiple action instances. To address this challenge, we propose the Contrast-based Localization EvaluAtioN Network (CleanNet) with our new action proposal evaluator, which provides pseudo-supervision by leveraging the temporal contrast in snippet-level action classification predictions. Essentially, the new action proposal evaluator enforces an additional temporal contrast constraint so that high-evaluation-score action proposals are more likely to coincide with true action instances. Moreover, the new action localization module is an integral part of CleanNet which enables end-to-end training. This is in contrast to many existing WS-TAL methods where action localization is merely a post-processing step. Experiments on THUMOS14 and ActivityNet datasets validate the efficacy of CleanNet against existing state-ofthe- art WS-TAL algorithms.

115 citations


Authors

Showing all 6829 results

NameH-indexPapersCitations
Philip S. Yu1481914107374
Lei Zhang130231286950
Jian Xu94136652057
Wei Chu8067028771
Le Song7634521382
Yuan Xie7673924155
Narendra Ahuja7647429517
Rong Jin7544919456
Beng Chin Ooi7340819174
Wotao Yin7230327233
Deng Cai7032624524
Xiaofei He7026028215
Irwin King6747619056
Gang Wang6537321579
Xiaodan Liang6131814121
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

94% related

Facebook
10.9K papers, 570.1K citations

93% related

AT&T Labs
5.5K papers, 483.1K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202230
20211,352
20201,671
20191,459
2018863