scispace - formally typeset
Search or ask a question
Institution

Alibaba Group

CompanyHangzhou, China
About: Alibaba Group is a company organization based out in Hangzhou, China. It is known for research contribution in the topics: Computer science & Terminal (electronics). The organization has 6810 authors who have published 7389 publications receiving 55653 citations. The organization is also known as: Alibaba Group Holding Limited & Alibaba Group (Cayman Islands).


Papers
More filters
Proceedings ArticleDOI
04 Apr 2021
TL;DR: Wang et al. as mentioned in this paper proposed a sparse graph convolutional network (SGCN) for pedestrian trajectory prediction, which explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians.
Abstract: Pedestrian trajectory prediction is a key technology in autopilot, which remains to be very challenging due to complex interactions between pedestrians. However, previous works based on dense undirected interaction suffer from modeling superfluous interactions and neglect of trajectory motion tendency, and thus inevitably result in a considerable deviance from the reality. To cope with these issues, we present a Sparse Graph Convolution Network (SGCN) for pedestrian trajectory prediction. Specifically, the SGCN explicitly models the sparse directed interaction with a sparse directed spatial graph to capture adaptive interaction pedestrians. Meanwhile, we use a sparse directed temporal graph to model the motion tendency, thus to facilitate the prediction based on the observed direction. Finally, parameters of a bi-Gaussian distribution for trajectory prediction are estimated by fusing the above two sparse graphs. We evaluate our proposed method on the ETH and UCY datasets, and the experimental results show our method outperforms comparative state-of-the-art methods by 9% in Average Displacement Error (ADE) and 13% in Final Displacement Error (FDE). Notably, visualizations indicate that our method can capture adaptive interactions between pedestrians and their effective motion tendencies.

83 citations

Posted Content
Jianxin Ma1, Chang Zhou2, Peng Cui1, Hongxia Yang2, Wenwu Zhu1 
TL;DR: This paper presents the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE), a new approach for learning disentangled representations from user behavior that can achieve substantial improvement over the state-of-the-art baselines and are interpretable and controllable.
Abstract: User behavior data in recommender systems are driven by the complex interactions of many latent factors behind the users' decision making processes. The factors are highly entangled, and may range from high-level ones that govern user intentions, to low-level ones that characterize a user's preference when executing an intention. Learning representations that uncover and disentangle these latent factors can bring enhanced robustness, interpretability, and controllability. However, learning such disentangled representations from user behavior is challenging, and remains largely neglected by the existing literature. In this paper, we present the MACRo-mIcro Disentangled Variational Auto-Encoder (MacridVAE) for learning disentangled representations from user behavior. Our approach achieves macro disentanglement by inferring the high-level concepts associated with user intentions (e.g., to buy a shirt or a cellphone), while capturing the preference of a user regarding the different concepts separately. A micro-disentanglement regularizer, stemming from an information-theoretic interpretation of VAEs, then forces each dimension of the representations to independently reflect an isolated low-level factor (e.g., the size or the color of a shirt). Empirical results show that our approach can achieve substantial improvement over the state-of-the-art baselines. We further demonstrate that the learned representations are interpretable and controllable, which can potentially lead to a new paradigm for recommendation where users are given fine-grained control over targeted aspects of the recommendation lists.

83 citations

Proceedings ArticleDOI
01 Aug 2017
TL;DR: A new domain adaptation technique for neural machine translation called cost weighting is proposed, which is appropriate for adaptation scenarios in which a small in- domain data set and a large general-domain data set are available.
Abstract: In this paper, we propose a new domain adaptation technique for neural machine translation called cost weighting, which is appropriate for adaptation scenarios in which a small in-domain data set and a large general-domain data set are available. Cost weighting incorporates a domain classifier into the neural machine translation training algorithm, using features derived from the encoder representation in order to distinguish in-domain from out-of-domain data. Classifier probabilities are used to weight sentences according to their domain similarity when updating the parameters of the neural translation model. We compare cost weighting to two traditional domain adaptation techniques developed for statistical machine translation: data selection and sub-corpus weighting. Experiments on two large-data tasks show that both the traditional techniques and our novel proposal lead to significant gains, with cost weighting outperforming the traditional methods.

83 citations

Proceedings Article
03 Jul 2018
TL;DR: This paper shows that the dynamic regret can be expressed in terms of the adaptive regret and the functional variation, which implies that strongly adaptive algorithms can be directly leveraged to minimize the dynamic regrets.
Abstract: To cope with changing environments, recent developments in online learning have introduced the concepts of adaptive regret and dynamic regret independently. In this paper, we illustrate an intrinsic connection between these two concepts by showing that the dynamic regret can be expressed in terms of the adaptive regret and the functional variation. This observation implies that strongly adaptive algorithms can be directly leveraged to minimize the dynamic regret. As a result, we present a series of strongly adaptive algorithms that have small dynamic regrets for convex functions, exponentially concave functions, and strongly convex functions, respectively. To the best of our knowledge, this is the first time that exponential concavity is utilized to upper bound the dynamic regret. Moreover, all of those adaptive algorithms do not need any prior knowledge of the functional variation, which is a significant advantage over previous specialized methods for minimizing dynamic regret.

83 citations

Proceedings ArticleDOI
18 Jun 2018
TL;DR: A Motion-guided Cascaded Refinement Network for VOS that takes the coarse segmentation as guidance to generate an accurate segmentation of full resolution and introduces a Single-channel Residual Attention Module to incorporate the coarse segmentsation map as attention, making the network effective and efficient in both training and testing.
Abstract: Deep CNNs have achieved superior performance in many tasks of computer vision and image understanding. However, it is still difficult to effectively apply deep CNNs to video object segmentation(VOS) since treating video frames as separate and static will lose the information hidden in motion. To tackle this problem, we propose a Motion-guided Cascaded Refinement Network for VOS. By assuming the object motion is normally different from the background motion, for a video frame we first apply an active contour model on optical flow to coarsely segment objects of interest. Then, the proposed Cascaded Refinement Network(CRN) takes the coarse segmentation as guidance to generate an accurate segmentation of full resolution. In this way, the motion information and the deep CNNs can well complement each other to accurately segment objects from video frames. Furthermore, in CRN we introduce a Single-channel Residual Attention Module to incorporate the coarse segmentation map as attention, making our network effective and efficient in both training and testing. We perform experiments on the popular benchmarks and the results show that our method achieves state-of-the-art performance at a much faster speed.

83 citations


Authors

Showing all 6829 results

NameH-indexPapersCitations
Philip S. Yu1481914107374
Lei Zhang130231286950
Jian Xu94136652057
Wei Chu8067028771
Le Song7634521382
Yuan Xie7673924155
Narendra Ahuja7647429517
Rong Jin7544919456
Beng Chin Ooi7340819174
Wotao Yin7230327233
Deng Cai7032624524
Xiaofei He7026028215
Irwin King6747619056
Gang Wang6537321579
Xiaodan Liang6131814121
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

94% related

Facebook
10.9K papers, 570.1K citations

93% related

AT&T Labs
5.5K papers, 483.1K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202230
20211,352
20201,671
20191,459
2018863