scispace - formally typeset
Search or ask a question
Institution

Alibaba Group

CompanyHangzhou, China
About: Alibaba Group is a company organization based out in Hangzhou, China. It is known for research contribution in the topics: Computer science & Terminal (electronics). The organization has 6810 authors who have published 7389 publications receiving 55653 citations. The organization is also known as: Alibaba Group Holding Limited & Alibaba Group (Cayman Islands).


Papers
More filters
Proceedings ArticleDOI
19 Jul 2018
TL;DR: In this article, a reinforcement learning (RL) solution was proposed for handling the complex dynamic environment in sponsored search auction, named SS-RTB, where the state transition probabilities vary between two days.
Abstract: Bidding optimization is one of the most critical problems in online advertising. Sponsored search (SS) auction, due to the randomness of user query behavior and platform nature, usually adopts keyword-level bidding strategies. In contrast, the display advertising (DA), as a relatively simpler scenario for auction, has taken advantage of real-time bidding (RTB) to boost the performance for advertisers. In this paper, we consider the RTB problem in sponsored search auction, named SS-RTB. SS-RTB has a much more complex dynamic environment, due to stochastic user query behavior and more complex bidding policies based on multiple keywords of an ad. Most previous methods for DA cannot be applied. We propose a reinforcement learning (RL) solution for handling the complex dynamic environment. Although some RL methods have been proposed for online advertising, they all fail to address the "environment changing'' problem: the state transition probabilities vary between two days. Motivated by the observation that auction sequences of two days share similar transition patterns at a proper aggregation level, we formulate a robust MDP model at hour-aggregation level of the auction data and propose a control-by-model framework for SS-RTB. Rather than generating bid prices directly, we decide a bidding model for impressions of each hour and perform real-time bidding accordingly. We also extend the method to handle the multi-agent problem. We deployed the SS-RTB system in the e-commerce search auction platform of Alibaba. Empirical experiments of offline evaluation and online A/B test demonstrate the effectiveness of our method.

75 citations

Journal ArticleDOI
Jing-Cheng Shi1, Yang Yu1, Qing Da2, Shi-Yong Chen2, Anxiang Zeng2 
17 Jul 2019
TL;DR: Zhang et al. as discussed by the authors used reinforcement learning for better commodity search in Taobao, one of the largest online retail platforms and meanwhile a physical environment with a high sampling cost.
Abstract: Applying reinforcement learning in physical-world tasks is extremely challenging. It is commonly infeasible to sample a large number of trials, as required by current reinforcement learning methods, in a physical environment. This paper reports our project on using reinforcement learning for better commodity search in Taobao, one of the largest online retail platforms and meanwhile a physical environment with a high sampling cost. Instead of training reinforcement learning in Taobao directly, we present our environment-building approach: we build Virtual-Taobao, a simulator learned from historical customer behavior data, and then we train policies in Virtual-Taobao with no physical sampling costs. To improve the simulation precision, we propose GAN-SD (GAN for Simulating Distributions) for customer feature generation with better matched distribution; we propose MAIL (Multiagent Adversarial Imitation Learning) for generating better generalizable customer actions. To further avoid overfitting the imperfection of the simulator, we propose ANC (Action Norm Constraint) strategy to regularize the policy model. In experiments, Virtual-Taobao is trained from hundreds of millions of real Taobao customers’ records. Compared with the real Taobao, Virtual-Taobao faithfully recovers important properties of the real environment. We further show that the policies trained purely in Virtual-Taobao, which has zero physical sampling cost, can have significantly superior real-world performance to the traditional supervised approaches, through online A/B tests. We hope this work may shed some light on applying reinforcement learning in complex physical environments.

75 citations

Proceedings ArticleDOI
14 Jun 2020
TL;DR: Extensive experiments on various benchmarks show that the proposed augmentation and the joint learning methods significantly boost the performance of the recognition networks.
Abstract: Handwritten text and scene text suffer from various shapes and distorted patterns. Thus training a robust recognition model requires a large amount of data to cover diversity as much as possible. In contrast to data collection and annotation, data augmentation is a low cost way. In this paper, we propose a new method for text image augmentation. Different from traditional augmentation methods such as rotation, scaling and perspective transformation, our proposed augmentation method is designed to learn proper and efi¬cient data augmentation which is more effective and specific for training a robust recognizer. By using a set of custom i¬ducial points, the proposed augmentation method is i¬‚exible and controllable. Furthermore, we bridge the gap between the isolated processes of data augmentation and network optimization by joint learning. An agent network learns from the output of the recognition network and controls the i¬ducial points to generate more proper training samples for the recognition network. Extensive experiments on various benchmarks, including regular scene text, irregular scene text and handwritten text, show that the proposed augmentation and the joint learning methods signii¬cantly boost the performance of the recognition networks. A general toolkit for geometric augmentation is available.

75 citations

Posted Content
TL;DR: This paper proposes a Personalized Outfit Generation (POG) model, which connects user preferences regarding individual items and outfits with Transformer architecture, and releases a large-scale dataset, which is the largest, publicly available, fashion related dataset, and the first to provide user behaviors relating to both outfits and fashion items.
Abstract: Increasing demand for fashion recommendation raises a lot of challenges for online shopping platforms and fashion communities. In particular, there exist two requirements for fashion outfit recommendation: the Compatibility of the generated fashion outfits, and the Personalization in the recommendation process. In this paper, we demonstrate these two requirements can be satisfied via building a bridge between outfit generation and recommendation. Through large data analysis, we observe that people have similar tastes in individual items and outfits. Therefore, we propose a Personalized Outfit Generation (POG) model, which connects user preferences regarding individual items and outfits with Transformer architecture. Extensive offline and online experiments provide strong quantitative evidence that our method outperforms alternative methods regarding both compatibility and personalization metrics. Furthermore, we deploy POG on a platform named Dida in Alibaba to generate personalized outfits for the users of the online application iFashion. This work represents a first step towards an industrial-scale fashion outfit generation and recommendation solution, which goes beyond generating outfits based on explicit queries, or merely recommending from existing outfit pools. As part of this work, we release a large-scale dataset consisting of 1.01 million outfits with rich context information, and 0.28 billion user click actions from 3.57 million users. To the best of our knowledge, this dataset is the largest, publicly available, fashion related dataset, and the first to provide user behaviors relating to both outfits and fashion items.

75 citations

Journal ArticleDOI
TL;DR: A cross-level view is advocated to comprehensively understand DT and offers insights to help other governments craft DT agenda.

75 citations


Authors

Showing all 6829 results

NameH-indexPapersCitations
Philip S. Yu1481914107374
Lei Zhang130231286950
Jian Xu94136652057
Wei Chu8067028771
Le Song7634521382
Yuan Xie7673924155
Narendra Ahuja7647429517
Rong Jin7544919456
Beng Chin Ooi7340819174
Wotao Yin7230327233
Deng Cai7032624524
Xiaofei He7026028215
Irwin King6747619056
Gang Wang6537321579
Xiaodan Liang6131814121
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

94% related

Facebook
10.9K papers, 570.1K citations

93% related

AT&T Labs
5.5K papers, 483.1K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202230
20211,352
20201,671
20191,459
2018863