scispace - formally typeset
Search or ask a question
Institution

Alibaba Group

CompanyHangzhou, China
About: Alibaba Group is a company organization based out in Hangzhou, China. It is known for research contribution in the topics: Computer science & Terminal (electronics). The organization has 6810 authors who have published 7389 publications receiving 55653 citations. The organization is also known as: Alibaba Group Holding Limited & Alibaba Group (Cayman Islands).


Papers
More filters
Proceedings ArticleDOI
03 Mar 2020
TL;DR: A Controllable Time-delay Transformer model that jointly completes the punctuation prediction and disfluency detection tasks in real time and facilitates freezing partial outputs with controllable time delay to fulfill the real-time constraints in partial decoding required by subsequent applications is proposed.
Abstract: With the increased applications of automatic speech recognition (ASR) in recent years, it is essential to automatically insert punctuation marks and remove disfluencies in transcripts, to improve the readability of the transcripts as well as the performance of subsequent applications, such as machine translation, dialogue systems, and so forth. In this paper, we propose a Controllable Time-delay Transformer (CT-Transformer) model that jointly completes the punctuation prediction and disfluency detection tasks in real time. The CT-Transformer model facilitates freezing partial outputs with controllable time delay to fulfill the real-time constraints in partial decoding required by subsequent applications. We further propose a fast decoding strategy to minimize latency while maintaining competitive performance. Experimental results on the IWSLT2011 benchmark dataset and an in-house Chinese annotated dataset demonstrate that the proposed approach outperforms the previous state-of-the-art models on F-scores and achieves a competitive inference speed.

26 citations

Journal Article
TL;DR: This work proposes a novel pruning method that optimizes the final accuracy of the pruned network and distills knowledge from the over-parameterized parent network's inner layers, and proposes a block grouping approach to cope with complex network structures such as convolutions with skip-links and depth-wise convolutions.
Abstract: Neural network pruning reduces the computational cost of an over-parameterized network to improve its efficiency. Popular methods vary from l1-norm sparsification to Neural Architecture Search (NAS). In this work, we propose a novel pruning method that optimizes the final accuracy of the pruned network and distills knowledge from the over-parameterized parent network's inner layers. To enable this approach, we formulate the network pruning as a Knapsack Problem which optimizes the trade-off between the importance of neurons and their associated computational cost. Then we prune the network channels while maintaining the high-level structure of the network. The pruned network is fine-tuned under the supervision of the parent network using its inner network knowledge, a technique we refer to as the {\it Inner Knowledge Distillation}. Our method leads to state-of-the-art pruning results on ImageNet, CIFAR-10 and CIFAR-100 using ResNet backbones. To prune complex network structures such as convolutions with skip-links and depth-wise convolutions, we propose a block grouping approach to cope with these structures. Through this we produce compact architectures with the same FLOPs as EfficientNet-B0 and MobileNetV3 but with higher accuracy, by 1% and 0.3% respectively on ImageNet, and faster runtime on GPU.

26 citations

Proceedings Article
01 Jan 2018
TL;DR: KylinX is presented, a dynamic library operating system for simplified and efficient cloud virtualization by providing the pVM (process-like VM) abstraction, allowing both page-level and library-level dynamic mapping.
Abstract: Unikernel specializes a minimalistic LibOS and a target application into a standalone single-purpose virtual machine (VM) running on a hypervisor, which is referred to as (virtual) appliance. Compared to traditional VMs, Unikernel appliances have smaller memory footprint and lower overhead while guaranteeing the same level of isolation. On the downside, Unikernel strips off the process abstraction from its monolithic appliance and thus sacrifices flexibility, efficiency, and applicability. This paper examines whether there is a balance embracing the best of both Unikernel appliances (strong isolation) and processes (high flexibility/efficiency). We present KylinX, a dynamic library operating system for simplified and efficient cloud virtualization by providing the pVM (process-like VM) abstraction. A pVM takes the hypervisor as an OS and the Unikernel appliance as a process allowing both page-level and library-level dynamic mapping. At the page level, KylinX supports pVM fork plus a set of API for inter-pVM communication (IpC). At the library level, KylinX supports shared libraries to be linked to a Unikernel appliance at runtime. KylinX enforces mapping restrictions against potential threats. KylinX can fork a pVM in about 1.3 ms and link a library to a running pVM in a few ms, both comparable to process fork on Linux (about 1 ms). Latencies of KylinX IpCs are also comparable to that of UNIX IPCs.

26 citations

Posted Content
TL;DR: Wang et al. as mentioned in this paper proposed a two-stage framework to extract triplets from the inputs, which show what the targeted aspects are, how their sentiment polarities are and why they have such polarities (i.e. opinion reasons).
Abstract: Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from "Waiters are very friendly and the pasta is simply average" could be ('Waiters', positive, 'friendly'). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.

26 citations

Patent
09 May 2007
TL;DR: In this article, a trigger frequency of a predetermined action with respect to the target resource is recorded, and the CoP based on the respective reciprocal resource value and the trigger frequency is determined.
Abstract: Interactive resource competition ranks resource users using coefficients of performance (CoP). Resource users compete for a target resource and each offer a quantifiable reciprocal resource in exchange for using the target resource. A trigger frequency of a predetermined action with respect to the target resource is recorded, and the CoP based on the respective reciprocal resource value and the trigger frequency is determined. The target resource is then allocated based on the ranking of the CoP's. An intermediate and credit fund account is used for both making payments and recording the trigger frequency. The competition is particularly useful for allocating an information display position in online electronic marketing.

26 citations


Authors

Showing all 6829 results

NameH-indexPapersCitations
Philip S. Yu1481914107374
Lei Zhang130231286950
Jian Xu94136652057
Wei Chu8067028771
Le Song7634521382
Yuan Xie7673924155
Narendra Ahuja7647429517
Rong Jin7544919456
Beng Chin Ooi7340819174
Wotao Yin7230327233
Deng Cai7032624524
Xiaofei He7026028215
Irwin King6747619056
Gang Wang6537321579
Xiaodan Liang6131814121
Network Information
Related Institutions (5)
Microsoft
86.9K papers, 4.1M citations

94% related

Google
39.8K papers, 2.1M citations

94% related

Facebook
10.9K papers, 570.1K citations

93% related

AT&T Labs
5.5K papers, 483.1K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202230
20211,352
20201,671
20191,459
2018863