scispace - formally typeset
Search or ask a question
Institution

Cancer Research Institute

NonprofitNew York, New York, United States
About: Cancer Research Institute is a nonprofit organization based out in New York, New York, United States. It is known for research contribution in the topics: Cancer & Population. The organization has 1061 authors who have published 754 publications receiving 26712 citations.
Topics: Cancer, Population, Breast cancer, Cell cycle, Gene


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that glycosylation on α3β1 impedes its association with CD151 and modulates spreading and motility of cells apparently to reach an optimum required for invasion of BM.

34 citations

Journal ArticleDOI
TL;DR: A colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness.
Abstract: Successful cytosolic delivery enables opportunities for improved treatment of various genetic disorders, infectious diseases and cancer. Cationic nanoemulsions were designed using alternative excipients and evaluated for particle size, charge, effect of sterilization on its stability, DNA condensation potential and cellular uptake efficiency. Various concentrations of non-ionic and ionic stabilizers were evaluated to design formula for colloidally stable cationic nanoemulsion. The nanoemulsion comprised of 5% Capmul MCM, 0.5% didodecyldimethylammonium bromide (DDAB), 1% phospholipid, 1% Poloxamer 188 and 2.25% glycerol and possessed particle size of 81.6 ± 3.56 nm and 137.1 ± 1.57 nm before and after steam sterilization, respectively. DNA condensation studies were carried out at various nanoemulsion: DNA ratios ranging from 1:1 to 10:1. Cell uptake studies were conducted on human embryonic kidney (HEK) cell lines which are widely reported for transfection studies. The nanoemulsions showed excellent cellular uptake as evaluated by fluorescence microscopy and flow cytometry. Overall, a colloidally stable cationic nanoemulsion with good DNA condensation ability was successfully fabricated for efficient cytosolic delivery and potential for in vivo effectiveness.

33 citations

Journal ArticleDOI
TL;DR: These observations redefine the existing activation model and showcase a unique example of how precise interdomain coordination, plasticity, and intermolecular contacts lead to distinct functional properties and hence provide new insights into HtrA2 structure, function, and dynamics.
Abstract: HtrA2, a complex trimeric pyramidal mitochondrial serine protease that regulates critical biological functions and diseases, including apoptosis and cancer, is a promising therapeutic target. It promotes apoptosis through multiple pathways, complex mechanisms of which are still elusive. The existing model of activation that emphasizes relative intramolecular movements between C-terminal PDZ and protease domains (PDZ-protease collapse in inactive and resting states) has not been able to unambiguously demonstrate dynamics of its actions. Using structure-guided design, molecular biology and protein biochemistry, we obtained various combinations of HtrA2 domains and mutants. Conformational changes and stability were characterized using molecular dynamics simulation and spectroscopic tools while functional enzymology delineated their roles in regulating enzyme catalysis. Quantitative Forster resonance energy transfer showed lesser intramolecular PDZ-protease distance in trimeric HtrA2 compared to its inactive monomeric counterpart (∼21 and ∼22.3 A, respectively, at 37°C). Our findings highlight importance of N-terminal region, oligomerization, and intricate intermolecular PDZ-protease interaction in proper active-site formation, enzyme-substrate complex stabilization, and hence HtrA2 functions. These observations redefine the existing activation model and showcase a unique example of how precise interdomain coordination, plasticity, and intermolecular contacts lead to distinct functional properties and hence provide new insights into HtrA2 structure, function, and dynamics.

33 citations

Journal ArticleDOI
TL;DR: The study revealed that an imbalance of HAT and HDAC activities led to the loss of site-specific histone acetylation and chromatin compaction as breast cancer cells acquired radio-resistance.
Abstract: Poor-responsiveness of tumors to radiotherapy is a major clinical problem. Owing to the dynamic nature of the epigenome, the identification and targeting of potential epigenetic modifiers may be helpful to curb radio-resistance. This requires a detailed exploration of the epigenetic changes that occur during the acquirement of radio-resistance. Such an understanding can be applied for effective utilization of treatment adjuncts to enhance the efficacy of radiotherapy and reduce the incidence of tumor recurrence. This study explored the epigenetic alterations that occur during the acquirement of radio-resistance. Sequential irradiation of MCF7 breast cancer cell line up to 20 Gy generated a radio-resistant model. Micrococcal nuclease digestion demonstrated the presence of compact chromatin architecture coupled with decreased levels of histone PTMs H3K9ac, H3K27 ac, and H3S10pK14ac in the G0/G1 and mitotic cell cycle phases of the radio-resistant cells. Further investigation revealed that the radio-resistant population possessed high HDAC and low HAT activity, thus making them suitable candidates for HDAC inhibitor–based radio-sensitization. Treatment of radio-resistant cells with HDAC inhibitor valproic acid led to the retention of γH2AX and decreased H3S10p after irradiation. Additionally, an analysis of 38 human patient samples obtained from 8 different tumor types showed variable tumor HDAC activity, thus demonstrating inter-tumoral epigenetic heterogeneity in a patient population. The study revealed that an imbalance of HAT and HDAC activities led to the loss of site-specific histone acetylation and chromatin compaction as breast cancer cells acquired radio-resistance. Due to variation in the tumor HDAC activity among patients, our report suggests performing a prior assessment of the tumor epigenome to maximize the benefit of HDAC inhibitor–based radio-sensitization.

33 citations


Authors

Showing all 1079 results

NameH-indexPapersCitations
Lewis L. Lanier15955486677
Xavier Estivill11067359568
Richard D. Kolodner10530740928
Jay A. Levy10445137920
Zbigniew Darzynkiewicz10168942625
Vikas P. Sukhatme10031739027
Israel Vlodavsky9849434150
Yung-Jue Bang9466446313
Naofumi Mukaida9336829652
Tetsuo Noda9031833195
George R. Pettit8984831759
Jo Vandesompele8838359368
Denis Gospodarowicz8420828915
Rolf Kiessling8229924617
Bruce R. Bistrian7759025634
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

86% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

84% related

Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

83% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

83% related

Albert Einstein College of Medicine
56.4K papers, 2.7M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20235
202223
202144
202034
201941
201829