scispace - formally typeset
Search or ask a question
Institution

Dalian Medical University

EducationDalian, China
About: Dalian Medical University is a education organization based out in Dalian, China. It is known for research contribution in the topics: Cancer & Apoptosis. The organization has 15623 authors who have published 9993 publications receiving 164145 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC.
Abstract: Pancreatic ductal adenocarcinoma (PDAC) is an incurable cancer resistant to traditional treatments, although a limited number of early-stage patients can undergo radical resection. Immunotherapies for the treatment of haematological malignancies as well as solid tumours have been substantially improved over the past decades, and impressive results have been obtained in recent preclinical and clinical trials. However, PDAC is likely the exception because of its unique tumour microenvironment (TME). In this review, we summarize the characteristics of the PDAC TME and focus on the network of various tumour-infiltrating immune cells, outlining the current advances in PDAC immunotherapy and addressing the effect of the PDAC TME on immunotherapy. This review further explores the combinations of different therapies used to enhance antitumour efficacy or reverse immunodeficiencies and describes optimizable immunotherapeutic strategies for PDAC. The concordant combination of various treatments, such as targeting cancer cells and the stroma, reversing suppressive immune reactions and enhancing antitumour reactivity, may be the most promising approach for the treatment of PDAC. Traditional treatments, especially chemotherapy, may also be optimized for individual patients to remodel the immunosuppressive microenvironment for enhanced therapy.

101 citations

Journal ArticleDOI
TL;DR: The increased excretion of urinary 8-OHdG is seen as indicating an increased systemic level of oxidative DNA damage in diabetic nephropathy patients and is not correlated with blood pressure and total cholesterol.

101 citations

Journal ArticleDOI
TL;DR: It is found that caveolin-1, tetraspanin CD82, and ganglioside GM3 enable the association of EGFR with PKC-alpha, ultimately leading to inhibition of EGfr signaling, which may be an effective adjunctive therapy for treating epithelial cell malignancies.
Abstract: Activation of protein kinase C (PKC)-alpha decreases normal and neoplastic cell proliferation by inhibiting epidermal growth factor receptor (EGFR)-related signaling. The molecular interactions upstream to PKC-alpha that influence its suppression of EGFR, however, are poorly understood. We have found that caveolin-1, tetraspanin CD82, and ganglioside GM3 enable the association of EGFR with PKC-alpha, ultimately leading to inhibition of EGFR signaling. GM3- and CD82-induced inhibition of EGFR signaling requires PKC-alpha translocation and serine/threonine phosphorylation, which eventually triggers EGFR Thr654 phosphorylation and receptor internalization. Within this ordered complex of signaling molecules, the ability of CD82 to associate with PKC-alpha requires the presence of caveolin-1, whereas the interaction of caveolin-1 or PKC-alpha with EGFR requires the presence of CD82 and ganglioside GM3. Disruption of the membrane with methyl-beta-cyclodextrin dissociates the EGFR/GM3/caveolin-1/CD82/PKC-alpha complex and prevents the inhibitory effect of PKC-alpha on EGFR phosphorylation, suggesting that caveolin-1, CD82, and ganglioside interact with EGFR and PKC-alpha within intact cholesterol-enriched membrane microdomains. Given the role of these membrane molecules in suppressing EGFR signaling, up-regulation of GM3, caveolin-1, and CD82 function may be an effective adjunctive therapy for treating epithelial cell malignancies.

101 citations

Journal ArticleDOI
23 Jan 2014-PLOS ONE
TL;DR: It is reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis, and it is suggested thatALDOA could be a potential marker for LS CC metastasis and a therapeutic target for drug development.
Abstract: Fructose-bisphosphate aldolase A (ALDOA) is a key enzyme in glycolysis and is responsible for catalyzing the reversible conversion of fructose-1,6-bisphosphate to glyceraldehydes-3-phosphate and dihydroxyacetone phosphate. ALDOA contributes to various cellular functions such as muscle maintenance, regulation of cell shape and mobility, striated muscle contraction, actin filament organization and ATP biosynthetic process. Here, we reported that ALDOA is a highly expressed in lung squamous cell carcinoma (LSCC) and its expression level is correlated with LSCC metastasis, grades, differentiation status and poor prognosis. Depletion of ALDOA expression in the lung squamous carcinoma NCI-H520 cells reduces the capabilities of cell motility and tumorigenesis. These data suggest that ALDOA could be a potential marker for LSCC metastasis and a therapeutic target for drug development.

101 citations

Journal ArticleDOI
TL;DR: This review aims to provide a comprehensive summary of the latest literature on the role of bacteria in cancer treatment and finds the anti-cancer potential of tumor-targeting bacteria through oral administration circumvents the use of the intravenous route and the associated adverse effects.
Abstract: In recent decades, bacteria’s therapeutic role has aroused attention in medicinal and pharmaceutical research. While bacteria are considered among the primary agents for causing cancer, recent research has shown intriguing results suggesting that bacteria can be effective agents for cancer treatment – they are the perfect vessels for targeted cancer therapy. Several bacterial strains/species have been discovered to possess inherent oncolytic potentials to invade and colonize solid tumors in vivo. The therapeutic strategy of using bacteria for treating cancer is considered to be effective; however, the severe side effects encountered during the treatment resulted in the abandonment of the therapy. State-of-the-art genetic engineering has been recently applied to bacteria therapy and resulted in a greater efficacy with minimum side effects. In addition, the anti-cancer potential of tumor-targeting bacteria through oral administration circumvents the use of the intravenous route and the associated adverse effects. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria in cancer treatment.

101 citations


Authors

Showing all 15657 results

NameH-indexPapersCitations
Jing Wang1844046202769
Jan-Åke Gustafsson147105898804
Melitta Schachner13586167304
Yan Zhang107241057758
Jau-Shyong Hong9347437172
Li Zhang9291835648
Charles G. Eberhart8444429920
Ying Lu8334324913
You-Lin Qiao7859523919
Wei Wei75106829415
Weidong Le7428722551
Jin-Tai Yu6643920020
Wei Jiang6566018932
Lan Tan6238713828
Hua Li6284917933
Network Information
Related Institutions (5)
China Medical University (PRC)
26.4K papers, 377.6K citations

95% related

Nanjing Medical University
37.9K papers, 635.8K citations

94% related

Peking Union Medical College
61.8K papers, 1.1M citations

91% related

Second Military Medical University
20.4K papers, 449.4K citations

91% related

Southern Medical University
28.8K papers, 423.1K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
202252
20211,433
20201,251
20191,075
2018911