scispace - formally typeset
Search or ask a question
Institution

Facility for Airborne Atmospheric Measurements

FacilityCranfield, United Kingdom
About: Facility for Airborne Atmospheric Measurements is a facility organization based out in Cranfield, United Kingdom. It is known for research contribution in the topics: Aerosol & Air mass. The organization has 37 authors who have published 76 publications receiving 2199 citations.
Topics: Aerosol, Air mass, Plume, Spectrometer, Ice nucleus


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented.
Abstract: . New in-situ aircraft measurements of Saharan dust originating from Mali, Mauritania and Algeria taken during the Fennec 2011 aircraft campaign over a remote part of the Sahara Desert are presented. Size distributions extending to 300 μm are shown, representing measurements extending further into the coarse mode than previously published for airborne Saharan dust. A significant coarse mode was present in the size distribution measurements with effective diameter (deff) from 2.3 to 19.4 μm and coarse mode volume median diameter (dvc) from 5.8 to 45.3 μm. The mean size distribution had a larger relative proportion of coarse mode particles than previous aircraft measurements. The largest particles (with deff > 12 μm, or dvc > 25 μm) were only encountered within 1 km of the ground. Number concentration, mass loading and extinction coefficient showed inverse relationships to dust age since uplift. Dust particle size showed a weak exponential relationship to dust age. Two cases of freshly uplifted dust showed quite different characteristics of size distribution and number concentration. Single Scattering Albed (SSA) values at 550 nm calculated from the measured size distributions revealed high absorption ranging from 0.70 to 0.97 depending on the refractive index. SSA was found to be strongly related to deff. New instrumentation revealed that direct measurements, behind Rosemount inlets, overestimate SSA by up to 0.11 when deff is greater than 2 μm. This is caused by aircraft inlet inefficiencies and sampling losses. Previous measurements of SSA from aircraft measurements may also have been overestimates for this reason. Radiative transfer calculations indicate that the range of SSAs during Fennec 2011 can lead to underestimates in shortwave atmospheric heating rates by 2.0 to 3.0 times if the coarse mode is neglected. This will have an impact on Saharan atmospheric dynamics and circulation, which should be taken into account by numerical weather prediction and climate models.

177 citations

Journal ArticleDOI
TL;DR: The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between l...
Abstract: The VAMOS Ocean-Cloud-Atmosphere-Land Regional Experiment (VOCALS-REx) was conducted from 15 October to 15 November 2008 in the South East Pacific (SEP) region to investigate interactions between l ...

115 citations

Journal ArticleDOI
TL;DR: In this paper, a linear relationship between the maximum hourly turning moment and the square of the average hourly wind speed at the canopy top was defined as the turning moment coefficient (T676 C).
Abstract: Wind damage to forests is an important ecological disturbance factor. At the same time, it can have serious economic consequences due to a reduction in timber production. Current models for predicting the risk of wind damage are useful, but generally only focus on the “mean” tree within uniform stands. This paper presents measurements made of wind loading on trees of different sizes within four forest stands of different structure and management history, but all well-acclimated to current wind conditions. Each tree demonstrated a linear relationship between the maximum hourly turning moment and the square of the average hourly wind speed at the canopy top; we defined this ratio (the gradient of the line M max vs. u 2) as the turning moment coefficient (T C). T C was correlated with tree size, in a relationship that differed little between the four forest sites despite the differences between the stands. The relationship between T C and individual tree competition within each stand was investigated, using both distance-independent and distance-dependent competition indices. All sites showed decreasing T C with increasing competition. However, the relationships differed between sites and would also be expected to change through time for a single site. The distance-dependent indices offered no improvement over the simpler, non-spatial indices that required only a diameter distribution. We suggest how, subject to further work, the results presented could be applied to calculate the risk of wind damage to trees of different sizes within a forest stand, and how the risk of wind damage to individual trees might change in response to thinning.

107 citations

Journal ArticleDOI
TL;DR: In this article, it is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice, which is shown to be a very important mechanism for producing the observed high ice concentrations.
Abstract: . In situ high resolution aircraft measurements of cloud microphysical properties were made in coordination with ground based remote sensing observations of a line of small cumulus clouds, using Radar and Lidar, as part of the Aerosol Properties, PRocesses And InfluenceS on the Earth's climate (APPRAISE) project. A narrow but extensive line (~100 km long) of shallow convective clouds over the southern UK was studied. Cloud top temperatures were observed to be higher than −8 °C, but the clouds were seen to consist of supercooled droplets and varying concentrations of ice particles. No ice particles were observed to be falling into the cloud tops from above. Current parameterisations of ice nuclei (IN) numbers predict too few particles will be active as ice nuclei to account for ice particle concentrations at the observed, near cloud top, temperatures (−7.5 °C). The role of mineral dust particles, consistent with concentrations observed near the surface, acting as high temperature IN is considered important in this case. It was found that very high concentrations of ice particles (up to 100 L −1 ) could be produced by secondary ice particle production providing the observed small amount of primary ice (about 0.01 L −1 ) was present to initiate it. This emphasises the need to understand primary ice formation in slightly supercooled clouds. It is shown using simple calculations that the Hallett-Mossop process (HM) is the likely source of the secondary ice. Model simulations of the case study were performed with the Aerosol Cloud and Precipitation Interactions Model (ACPIM). These parcel model investigations confirmed the HM process to be a very important mechanism for producing the observed high ice concentrations. A key step in generating the high concentrations was the process of collision and coalescence of rain drops, which once formed fell rapidly through the cloud, collecting ice particles which caused them to freeze and form instant large riming particles. The broadening of the droplet size-distribution by collision-coalescence was, therefore, a vital step in this process as this was required to generate the large number of ice crystals observed in the time available. Simulations were also performed with the WRF (Weather, Research and Forecasting) model. The results showed that while HM does act to increase the mass and number concentration of ice particles in these model simulations it was not found to be critical for the formation of precipitation. However, the WRF simulations produced a cloud top that was too cold and this, combined with the assumption of continual replenishing of ice nuclei removed by ice crystal formation, resulted in too many ice crystals forming by primary nucleation compared to the observations and parcel modelling.

99 citations

Journal ArticleDOI
TL;DR: This article reported the concentration of ice nucleating particles in dust laden air over the tropical Atlantic within a few days' transport of one of the world's most important atmospheric sources of desert dust, the Sahara.
Abstract: Desert dust is one of the most important atmospheric ice-nucleating aerosol species around the globe. However, there have been very few measurements of ice-nucleating particle (INP) concentrations in dusty air close to desert sources. In this study we report the concentration of INPs in dust laden air over the tropical Atlantic within a few days' transport of one of the world's most important atmospheric sources of desert dust, the Sahara. These measurements were performed as part of the Ice in Clouds Experiment-Dust campaign based in Cape Verde, during August 2015. INP concentrations active in the immersion mode, determined using a droplet-on-filter technique, ranged from around 10² m⁻³ at -12°C to around 10⁵ m⁻³ at -23°C. There is about 2 orders of magnitude variability in INP concentration for a particular temperature, which is determined largely by the variability in atmospheric dust loading. These measurements were made at altitudes from 30 to 3,500 m in air containing a range of dust loadings. The ice active site density (n s ) for desert dust dominated aerosol derived from our measurements agrees with several laboratory-based parameterizations for ice nucleation by desert dust within 1 to 2 orders of magnitude. The small variability in n s values determined from our measurements (within about 1 order of magnitude) is striking given that the back trajectory analysis suggests that the sources of dust were geographically diverse. This is consistent with previous work, which indicates that desert dust's ice-nucleating activity is only weakly dependent on source.

86 citations


Authors

Showing all 38 results

Network Information
Related Institutions (5)
Finnish Meteorological Institute
6.1K papers, 228.3K citations

80% related

Royal Netherlands Meteorological Institute
3.6K papers, 215.1K citations

78% related

Earth System Research Laboratory
2.5K papers, 164.4K citations

78% related

Desert Research Institute
3.9K papers, 197.8K citations

77% related

Goddard Institute for Space Studies
3.6K papers, 285.3K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20221
20211
20204
20198
20186