scispace - formally typeset
Search or ask a question
Institution

Hefei University of Technology

EducationHefei, China
About: Hefei University of Technology is a education organization based out in Hefei, China. It is known for research contribution in the topics: Computer science & Microstructure. The organization has 28093 authors who have published 24935 publications receiving 324989 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A 3D current collector made of covalently connected carbon nanostructures is presented, which can significantly improve battery performance when used as the cathode and/or anode.
Abstract: A 3D current collector made of covalently connected carbon nanostructures is presented, which can significantly improve battery performance when used as the cathode and/or anode. A Li-S cell assembled using these current collectors, with the cathode loaded with elemental sulfur and the anode loaded with lithium metal, delivers a high-rate capacity of 860 mA h g-1 at 12 C.

182 citations

Journal ArticleDOI
TL;DR: In this article, a short conjugation molecular ligand is successfully adsorbed on the surface of CsPbX3 quantum dots to instead long insulating ligands, resulting in a remarkable enhancement of the carrier injection and transport.
Abstract: Despite the great potential of all-inorganic CsPbX3 (X = Br or I) quantum dots (QDs) for light-emitting diodes (QLEDs), their emission properties have been impeded by the long insulating ligands on the QD surface. To address the problem, an efficient surface ligand engineering method has been executed by using a short conjugation molecular ligand phenethylamine (PEA) as ligands to synthesize CsPbX3 QDs and then treating the CsPbX3 QD films with phenethylammonium bromide (PEABr) or phenethylammonium iodide (PEAI). The results indicate that the short conjugation molecular ligand is successfully adsorbed on the surface of CsPbX3 QDs to instead long insulating ligands, resulting in the remarkable enhancement of the carrier injection and transport. The incorporation of phenethylamine (PEA) as synthetic ligand causes the fewer trap states in both CsPbBr3 and CsPbI3 QDs, exhibiting the near-unity photoluminescence quantum yields (PLQYs) of 93% and 95%, respectively. The luminance of CsPbBr3 and CsPbI3 QLEDs coul...

182 citations

Journal ArticleDOI
TL;DR: In this article, a phase-pure single crystallite with diameters of 30-400nm and lengths of tens of micrometers was synthesized by thermal decomposition of a template precursor of MnOOH, which was obtained by hydrothermal treatment of KMnO 4 in an aqueous ethanol solution.

181 citations

Journal ArticleDOI
TL;DR: This article proposes a more expressive ICF solution by accounting for the nonlinear and higher-order relationships among items, and treats this solution as a deep variant of ICF, thus term it as DeepICF.
Abstract: Item-based Collaborative Filtering (ICF) has been widely adopted in recommender systems in industry, owing to its strength in user interest modeling and ease in online personalization. By constructing a user’s profile with the items that the user has consumed, ICF recommends items that are similar to the user’s profile. With the prevalence of machine learning in recent years, significant processes have been made for ICF by learning item similarity (or representation) from data. Nevertheless, we argue that most existing works have only considered linear and shallow relationships between items, which are insufficient to capture the complicated decision-making process of users.In this article, we propose a more expressive ICF solution by accounting for the nonlinear and higher-order relationships among items. Going beyond modeling only the second-order interaction (e.g., similarity) between two items, we additionally consider the interaction among all interacted item pairs by using nonlinear neural networks. By doing this, we can effectively model the higher-order relationship among items, capturing more complicated effects in user decision-making. For example, it can differentiate which historical itemsets in a user’s profile are more important in affecting the user to make a purchase decision on an item. We treat this solution as a deep variant of ICF, thus term it as DeepICF. To justify our proposal, we perform empirical studies on two public datasets from MovieLens and Pinterest. Extensive experiments verify the highly positive effect of higher-order item interaction modeling with nonlinear neural networks. Moreover, we demonstrate that by more fine-grained second-order interaction modeling with attention network, the performance of our DeepICF method can be further improved.

181 citations

Journal ArticleDOI
TL;DR: In this paper, a new kind of nitrogen-doped graphene (NG) electrocatalyst with well-defined mesoporous structure has been for the first time fabricated by a scalable and templateless technique of directly annealing of pre-synthesized graphene oxide-polydopamine (GO/PDA) nanocomposites.

180 citations


Authors

Showing all 28292 results

NameH-indexPapersCitations
Yi Chen2174342293080
Xiang Zhang1541733117576
Jun Chen136185677368
Shuicheng Yan12381066192
Yang Li117131963111
Jian Liu117209073156
Han-Qing Yu10571839735
Jianqiao Ye10196242647
Wei Liu96153842459
Wei Zhou93164039772
Panos M. Pardalos87120739512
Zhong Chen80100028171
Yong Zhang7866536388
Rong Cao7656821747
Qian Zhang7689125517
Network Information
Related Institutions (5)
South China University of Technology
69.4K papers, 1.2M citations

92% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

91% related

Tsinghua University
200.5K papers, 4.5M citations

91% related

University of Science and Technology of China
101K papers, 2.4M citations

90% related

Tianjin University
79.9K papers, 1.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023106
2022490
20213,120
20202,931
20192,666
20182,151