scispace - formally typeset
Search or ask a question
Institution

Huaqiao University

EducationAmoy, China
About: Huaqiao University is a education organization based out in Amoy, China. It is known for research contribution in the topics: Dye-sensitized solar cell & Catalysis. The organization has 9019 authors who have published 9283 publications receiving 126612 citations. The organization is also known as: Huáqiáo Dàxué.


Papers
More filters
Journal ArticleDOI
01 Oct 2018-Nature
TL;DR: In this article, the authors describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20.3 per cent, which is achieved by a new strategy for managing the compositional distribution in the device.
Abstract: Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1–3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4–8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively—still well behind the performance of organic LEDs10–12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device—an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display. A strategy for managing the compositional distribution in metal halide perovskite light-emitting diodes enables them to surpass 20% external quantum efficiency—a step towards their practical application in lighting and displays.

2,346 citations

Journal ArticleDOI
TL;DR: It may be said that the NiS/Pt/Ti counter electrode is a promising catalytic material to replace the expensive platinum in FDSSCs.
Abstract: A composite film of nickel sulfide/platinum/titanium foil (NiS/Pt/Ti) with low cost and high electrocatalytic activity was synthesized by the use of an in situ electropolymerization route and proposed as a counter electrode (CE) catalyst for flexible dye-sensitized solar cells (FDSSCs). The FDSSC with the NiS/Pt/Ti CE exhibited a comparable power conversion efficiency of 7.20% to the FDSSC with the platinum/titanium (Pt/Ti) CE showing 6.07%. The surface morphology of the NiS/Pt/Ti CE with one-dimensional (1D) structure is characterized by using the scanning electron microscopy (SEM). The NiS/Pt/Ti CE also displayed multiple electrochemical functions of excellent conductivity, great electrocatalytic ability for iodine/triiodine, and low charge transfer resistance of 2.61 ± 0.02 Ω cm2, which were characterized by using the cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and Tafel polarization plots. The photocurrent-photovoltage (J-V) character curves were further used to calculate the theoretical optical light performance parameters of the FDSSCs. It may be said that the NiS/Pt/Ti counter electrode is a promising catalytic material to replace the expensive platinum in FDSSCs.

1,036 citations

Journal ArticleDOI
Jianghua Li1, Biao Shen1, Zhenhua Hong1, Bizhou Lin1, Bifen Gao1, Yilin Chen1 
TL;DR: The O-doping in the g-C(3)N(4) lattice could induce intrinsic electronic and band structure modulation, resulting in its absorbance edge up to 498 nm and enhanced visible-light photoactivity, consequently.

887 citations

Journal ArticleDOI
TL;DR: An App (called Healthcare Data Gateway (HGD) architecture based on blockchain is proposed to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private.
Abstract: Healthcare data are a valuable source of healthcare intelligence. Sharing of healthcare data is one essential step to make healthcare system smarter and improve the quality of healthcare service. Healthcare data, one personal asset of patient, should be owned and controlled by patient, instead of being scattered in different healthcare systems, which prevents data sharing and puts patient privacy at risks. Blockchain is demonstrated in the financial field that trusted, auditable computing is possible using a decentralized network of peers accompanied by a public ledger. In this paper, we proposed an App (called Healthcare Data Gateway (HGD)) architecture based on blockchain to enable patient to own, control and share their own data easily and securely without violating privacy, which provides a new potential way to improve the intelligence of healthcare systems while keeping patient data private. Our proposed purpose-centric access model ensures patient own and control their healthcare data; simple unified Indicator-Centric Schema (ICS) makes it possible to organize all kinds of personal healthcare data practically and easily. We also point out that MPC (Secure Multi-Party Computing) is one promising solution to enable untrusted third-party to conduct computation over patient data without violating privacy.

884 citations

Journal ArticleDOI

809 citations


Authors

Showing all 9087 results

NameH-indexPapersCitations
Hui Li1352982105903
Lei Zhang130231286950
Yen Wei8564925805
Tao Jiang8294027018
Jin Yu7448032123
Shu-Feng Zhou7446621576
Jihuai Wu6850820799
Yufen Zhao65105916918
Chun-Yi Su6541413718
Tsugio Sato6449715492
Jianming Lin6125813086
Xin Chen6095522412
Han Huang5946412469
Shu Yin5945712199
Jiangfeng Du5738612162
Network Information
Related Institutions (5)
Dalian University of Technology
71.9K papers, 1.1M citations

90% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Tianjin University
79.9K papers, 1.2M citations

89% related

Harbin Institute of Technology
109.2K papers, 1.6M citations

89% related

Tsinghua University
200.5K papers, 4.5M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
202340
2022169
20211,124
20201,081
2019984