scispace - formally typeset
Search or ask a question
Institution

Incyte

CompanyWilmington, Delaware, United States
About: Incyte is a company organization based out in Wilmington, Delaware, United States. It is known for research contribution in the topics: Expression vector & Ruxolitinib. The organization has 1262 authors who have published 1875 publications receiving 75015 citations. The organization is also known as: Incyte Corporation & Incyte Inc..


Papers
More filters
Patent
Wenqing Yao1, David M. Burns1, Lihua Chen1, Jincong Zhuo1, Chunhong He1 
01 Mar 2007
TL;DR: In this paper, the authors proposed a method for the treatment of various diseases associated with expression or activity of 11-β hydroxyl steroid dehydrogenase type 1 and pharmaceutical compositions thereof.
Abstract: The present invention relates to inhibitors of 11-β hydroxyl steroid dehydrogenase type 1 and pharmaceutical compositions thereof. The compounds of the invention can be useful in the treatment of various diseases associated with expression or activity of 11-β hydroxyl steroid dehydrogenase type 1.

103 citations

Journal ArticleDOI
TL;DR: CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy to attract more effector cells following immunotherapy.
Abstract: T cell trafficking into tumors depends on a "match" between chemokine receptors on effector cells (e.g., CXCR3 and CCR5) and tumor-secreted chemokines. There is often a chemokine/chemokine receptor "mismatch", with tumors producing minute amounts of chemokines, resulting in inefficient targeting of effectors to tumors. We aimed to alter tumors to produce higher levels of CXCL11, a CXCR3 ligand, to attract more effector cells following immunotherapy. Mice bearing established subcutaneous tumors were studied. In our first approach, we used modified chimeric antigen receptor (CAR)-transduced human T cells to deliver CXCL11 (CAR/CXCL11) into tumors. In our second approach, we intravenously (iv) administered a modified oncolytic vaccinia virus (VV) engineered to produce CXCL11 (VV.CXCL11). The effect of these treatments on T cell trafficking into the tumors and anti-tumor efficacy after subsequent CAR T cell injections or anti-tumor vaccines was determined. CAR/CXCL11 and VV.CXCL11 significantly increased CXCL11 protein levels within tumors. For CAR/CXCL11, injection of a subsequent dose of CAR T cells did not result in increased intra-tumoral trafficking, and appeared to decrease the function of the injected CAR T cells. In contrast, VV.CXCL11 increased the number of total and antigen-specific T cells within tumors after CAR T cell injection or vaccination and significantly enhanced anti-tumor efficacy. Both approaches were successful in increasing CXCL11 levels within the tumors; however, only the vaccinia approach was successful in recruiting T cells and augmenting anti-tumor efficacy. VV.CXCL11 should be considered as a potential approach to augment adoptive T cell transfer or vaccine immunotherapy.

102 citations

Journal ArticleDOI
TL;DR: The hypothesis that ADAM-TS4 is constitutively produced in these cells and tissue, and that stimulation by IL-1 results in aggrecanase activation, is supported.
Abstract: Objective To study the production of aggrecanase 1 (ADAM-TS4) in monolayer chondrocytes, capsular fibroblasts, and cartilage. Methods Bovine nasal and articular cartilage, monolayer chondrocytes, and capsular fibroblasts were incubated in the absence and presence of interleukin-1 (IL-1). ADAM-TS4 production was evaluated by immunofluorescence or by Western blot analysis. Aggrecanase activity was measured in cells grown on an immobilized peptide substrate, and peptide cleavage was monitored by enzyme-linked immunosorbent assay. Results There was constitutive production of ADAM-TS4 in both cells and tissue. The protein was associated with the extracellular matrix based on the observation that the staining could be reduced following treatment of chondrocytes with heparin or exposure to chondroitinase ABC. Interestingly, there was no detectable change in the abundance of ADAM-TS4 in response to IL-1. Western blot analysis of cell lysates from IL-1–stimulated chondrocytes showed no evidence of increased ADAM-TS4 production, but resulted in activation of ADAM-TS4. The activation was associated with an increased generation in the aggrecanase neoepitope NITEGE in nasal cartilage in response to IL-1. These data suggest that induction of aggrecanase activity both in cells and in cartilage by IL-1 may involve the stimulation of an activator of ADAM-TS4. Consistent with this observation, culture of chondrocytes on a solid support containing a peptide substrate resulted in the generation of aggrecanase-mediated cleavage that could be blocked by selective inhibitors of ADAM-TS4. Conclusion These data support the hypothesis that ADAM-TS4 is constitutively produced in these cells and tissue, and that stimulation by IL-1 results in aggrecanase activation. Thus, the activator could be a potential target by which to control aggrecanase-mediated degradation in arthritic diseases.

102 citations

Journal ArticleDOI
E.M. Evertsz1, J. Au-Young1, M.V. Ruvolo1, Ai Ching Lim1, M.A. Reynolds1 
TL;DR: In this article, a model array representing four distinct functional classes (families): chemokines, cytochrome P-450 isozymes, G proteins, and proteases was used to profile the expression of thousands of gene targets in a single experiment.
Abstract: Glass cDNA microarrays can be used to profile the expression of thousands of gene targets in a single experiment. However, the potential for hybridization cross-reactivity needs to be considered when interpreting the results. Here, we describe hybridization experiments with a model array representing four distinct functional classes (families): chemokines, cytochrome P-450 isozymes, G proteins, and proteases. The cDNA clones selected for this array exhibited pairwise sequence identities ranging from 55% to 100%, as determined by a homology scoring algorithm (LALIGN). Targets for microarraying were amplified by PCR and spotted in 4-fold replication for signal averaging. One designated target from each family was further amplified by PCR to incorporate a T7 promoter sequence for the production of synthetic RNA transcripts. These transcripts were used to generate fluorescent hybridization probes by reverse transcription at varying input concentrations. As expected, hybridization signals were highest at the matching target elements. Targets containing less than 80% sequence identity relative to the hybridization probe sequences showed cross-reactivities ranging from 0.6% to 12%. Targets containing greater than 80% identity showed higher cross-reactivities (26%-57%). These cross-reactive signals were analyzed for statistical correlation with the length of sequence overlap, percent sequence identity, and homology score determined by LALIGN. Overall, percent sequence identity was the best predictor of hybridization cross-reactivity. These results provide useful guidelines for interpreting glass cDNA microarray data.

102 citations

Journal ArticleDOI
TL;DR: The crystal structure of PTP1B in complex with the most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico.
Abstract: Structure-based design led to the discovery of novel (S)-isothiazolidinone ((S)-IZD) heterocyclic phosphotyrosine (pTyr) mimetics that when incorporated into dipeptides are exceptionally potent, competitive, and reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B) The crystal structure of PTP1B in complex with our most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico Our data provide strong evidence that the (S)-IZD is the most potent pTyr mimetic reported to date

101 citations


Authors

Showing all 1267 results

NameH-indexPapersCitations
Patrick O. Brown183755200985
David Botstein165468212787
Inês Barroso11330176241
Alessandro M. Vannucchi9471535482
Ana M. Valdes8433426627
Mark C. Genovese7936426945
Michael B. Eisen7117089150
Jingyue Ju6116918952
Jeanne F. Loring6017714503
James Z. Wang5722521890
Emmett V. Schmidt501509304
Günther Sperk5012410246
Robert C. Newton441117369
Magnus Pfahl44878064
William V. Williams441687278
Network Information
Related Institutions (5)
Genentech
17.1K papers, 1.4M citations

89% related

University of Texas MD Anderson Cancer Center
92.5K papers, 4.7M citations

89% related

Memorial Sloan Kettering Cancer Center
65.3K papers, 4.4M citations

88% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

88% related

St. Jude Children's Research Hospital
19.2K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20231
20225
202158
202093
201985
201882