scispace - formally typeset
Search or ask a question
Institution

Kwangwoon University

EducationSeoul, South Korea
About: Kwangwoon University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Resonator. The organization has 4020 authors who have published 8217 publications receiving 104365 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The advantages of surface chemistry of plasmonic metal nanoparticles for tuning of their colorimetric sensing applications in various drugs assays in pharmaceutical and biological samples and some research challenges to accelerate the development are listed.
Abstract: Plasmonic metal nanoparticles have been explored as a new class of chemical read-outs for assaying of a variety of chemical and biological species because of their unique physico-chemical and size dependent properties. Metal nanoparticles-based optical technologies are based on either new class of organic molecular assembly or with aggregation-induced optical changes features, which can also improve the sensitivity of drug assays in pharmaceutical analysis. This review describes the advantages of surface chemistry of plasmonic metal nanoparticles (e.g., silver, copper, gold, and platinum) for tuning of their colorimetric sensing applications in various drugs assays in pharmaceutical and biological samples. It provides insights of various plasmonic metal nanoparticles-based sensing strategies for the selective, sensitive and simultaneous colorimetric assay of drugs in pharmaceutical samples. Finally, we listed some research challenges to accelerate the development of plasmonic metal nanoparticles-based colorimetric sensors that are directly applicable for assaying drugs in pharmaceutical samples.

148 citations

Journal ArticleDOI
TL;DR: A rational vision of the main achievements of Ag NPs as nanocarriers for inhibition of various microbial agents (bacteria, fungus, and virus) is provided.

147 citations

Journal ArticleDOI
TL;DR: A broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics is provided, both electrochemical sensors and biological applications are detailed.
Abstract: The important biological roles of nitric oxide (NO) have prompted the development of analytical techniques capable of sensitive and selective detection of NO. Electrochemical sensing, more than any other NO detection method, embodies the parameters necessary for quantifying NO in challenging physiological environments such as blood and the brain. In this tutorial review, we provide a broad overview of the field of electrochemical NO sensors, including design, fabrication, and analytical performance characteristics. Both electrochemical sensors and biological applications are detailed.

145 citations

Journal ArticleDOI
TL;DR: In this article, an active power filter based on a digital signal processing (DSP) controller with enhanced current control performance is presented, where a novel predictive current control method is introduced to compensate the phase error of harmonic components caused by discrete sampling and finite nonnegligible execution time delay.
Abstract: This paper presents an active power filter based on a digital signal processing (DSP) controller with enhanced current control performance. A novel predictive current control method is introduced to compensate the phase error of harmonic components caused by discrete sampling and finite nonnegligible execution time delay. The concept of average current control is also introduced that is adequate for digital current control. With a close coordination between the reference current prediction, PWM pattern generation, and control timing, a high performance control is achieved. Experimental results show that the developed system gives satisfactory performance in harmonic and reactive power compensation.

145 citations

Journal ArticleDOI
TL;DR: In this paper, an electrospun nanofiber-based TENG (EN-TENG) using a poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/MXene nanocomposite material with superior dielectric constant and high surface charge density is reported.
Abstract: Understanding of the triboelectric charge accumulation from the view of microcapacitor formation plays a critical role in boosting the output performance of the triboelectric nanogenerator (TENG). Here, an electrospun nanofiber-based TENG (EN-TENG) using a poly(vinylidene fluoride-trifluoroethylene) (PVDF-TrFE)/MXene nanocomposite material with superior dielectric constant and high surface charge density is reported. The influence of dielectric properties on the output performance of the EN-TENG is investigated theoretically and experimentally. The fabricated EN-TENG exhibited a maximum power density of 4.02 W/m2 at a matching external load resistance of 4 MΩ. The PVDF-TrFE/MXene nanocomposite improved the output performance of the EN-TENG fourfold. The EN-TENG successfully powered an electronic stopwatch and thermo-hygrometer by harvesting energy from human finger tapping. Moreover, it was utilized in smart home applications as a self-powered switch for controlling electrical home appliances, including fire alarms, fans, and smart doors. This work presents an effective and innovative approach toward self-powered systems, human-machine interfaces, and smart home applications.

145 citations


Authors

Showing all 4054 results

NameH-indexPapersCitations
Naresh Kumar66110620786
Jae-Young Choi6661432855
Jae Youl Cho5650512012
Byong-Hun Jeon5233110092
Donghyun Kim516129827
Kyo Han Ahn501867334
Sung-Soo Kim4946510070
Taekyun Kim487559838
Roozbeh Ghaffari4814313015
Eun Ha Choi475859599
Younghun Kim432768609
Jae Yeong Park433336027
Glen A. Russell403086845
Eun Woo Shin391375289
Pankaj Attri381304440
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Pohang University of Science and Technology
35.9K papers, 1M citations

92% related

Hanyang University
58.8K papers, 1.1M citations

92% related

Sungkyunkwan University
56.4K papers, 1.3M citations

92% related

National Chiao Tung University
52.4K papers, 956.2K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202323
202267
2021482
2020464
2019479
2018443