scispace - formally typeset
Search or ask a question
Institution

Kwangwoon University

EducationSeoul, South Korea
About: Kwangwoon University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Resonator. The organization has 4020 authors who have published 8217 publications receiving 104365 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This review discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemicals to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples.
Abstract: As the interest in wearable devices has increased recently, increasing biosensor flexibility has begun to attract considerable attention. Among the various types of biosensors, electrochemical biosensors are uniquely suited for the development of such flexible biosensors due to their many advantages, including their fast response, inherent miniaturization, convenient operation, and portability. Therefore, many studies on flexible electrochemical biosensors have been conducted in recent years to achieve non-invasive and real-time monitoring of body fluids such as tears, sweat, and saliva. To achieve this, various substrates, novel nanomaterials, and detection techniques have been utilized to develop conductive flexible platforms that can be applied to create flexible electrochemical biosensors. In this review, we discussed recently reported flexible electrochemical biosensors and divided them into specific categories including materials for flexible substrate, fabrication techniques for flexible biosensor development, and recently developed flexible electrochemical biosensors to externally monitor target molecules, thereby providing a means to noninvasively examine cells and body fluid samples. In conclusion, this review will discuss the materials, methods, recent studies, and perspectives on flexible electrochemical biosensors for healthcare monitoring and wearable biosensing systems.

48 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used the Australian Research Council Future Fellowship (FT110100853, D.-Y.C.) and was performed in part at the ACT node of the Australian National Fabrication Facility.
Abstract: This work was supported by National Research Foundation of Korea (NRF) grants funded by the Ministry of Education (Grant No. 2018R1A6A1A03025242). The work was partly supported by the Australian Research Council Future Fellowship (FT110100853, D.-Y.C.) and was performed in part at the ACT node of the Australian National Fabrication Facility

48 citations

Journal ArticleDOI
08 Feb 2021-Sensors
TL;DR: This review introduces the concept of machine learning and basic machine learning techniques and examines the methods for performance evaluation, and summarizes representative examples of terahertz imaging and time-domain spectroscopy that are conducted using machine learning.
Abstract: Terahertz imaging and time-domain spectroscopy have been widely used to characterize the properties of test samples in various biomedical and engineering fields. Many of these tasks require the analysis of acquired terahertz signals to extract embedded information, which can be achieved using machine learning. Recently, machine learning techniques have developed rapidly, and many new learning models and learning algorithms have been investigated. Therefore, combined with state-of-the-art machine learning techniques, terahertz applications can be performed with high performance that cannot be achieved using modeling techniques that precede the machine learning era. In this review, we introduce the concept of machine learning and basic machine learning techniques and examine the methods for performance evaluation. We then summarize representative examples of terahertz imaging and time-domain spectroscopy that are conducted using machine learning.

48 citations

Journal ArticleDOI
TL;DR: The developed adsorption method was well applied for real field water samples collected from the mining area of South Korea where the GO-Gd2O3 can reduce the quantity of arsenic under the maximum accepted concentration of arsenic considered fit for drinking water stipulated by environmental protection agencies.

48 citations

Journal ArticleDOI
TL;DR: In this article, the surface of graphene oxide was functionalized with lanthanum to produce porous flowered graphene oxide-lanthanum fluoride (GO-LaF) nanocomposite for adsorptive removal of As(V) from aqueous system.

48 citations


Authors

Showing all 4054 results

NameH-indexPapersCitations
Naresh Kumar66110620786
Jae-Young Choi6661432855
Jae Youl Cho5650512012
Byong-Hun Jeon5233110092
Donghyun Kim516129827
Kyo Han Ahn501867334
Sung-Soo Kim4946510070
Taekyun Kim487559838
Roozbeh Ghaffari4814313015
Eun Ha Choi475859599
Younghun Kim432768609
Jae Yeong Park433336027
Glen A. Russell403086845
Eun Woo Shin391375289
Pankaj Attri381304440
Network Information
Related Institutions (5)
KAIST
77.6K papers, 1.8M citations

93% related

Pohang University of Science and Technology
35.9K papers, 1M citations

92% related

Hanyang University
58.8K papers, 1.1M citations

92% related

Sungkyunkwan University
56.4K papers, 1.3M citations

92% related

National Chiao Tung University
52.4K papers, 956.2K citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202323
202267
2021482
2020464
2019479
2018443