scispace - formally typeset
Search or ask a question
Institution

Li Ka Shing Faculty of Medicine, University of Hong Kong

About: Li Ka Shing Faculty of Medicine, University of Hong Kong is a based out in . It is known for research contribution in the topics: Population & Medicine. The organization has 5133 authors who have published 5621 publications receiving 193650 citations.
Topics: Population, Medicine, Cancer, Influenza A virus, Virus


Papers
More filters
Journal ArticleDOI
TL;DR: The findings are consistent with person-to-person transmission of this novel coronavirus in hospital and family settings, and the reports of infected travellers in other geographical regions.

7,392 citations

Journal ArticleDOI
TL;DR: It is inferred that epidemics are already growing exponentially in multiple major cities of China with a lag time behind the Wuhan outbreak of about 1–2 weeks, and that other major Chinese cities are probably sustaining localised outbreaks.

3,938 citations

Journal ArticleDOI
14 Apr 2020-JAMA
TL;DR: This study describes possible transmission of novel coronavirus disease 2019 (COVID-19) from an asymptomatic Wuhan resident to 5 family members in Anyang, a Chinese city in the neighboring province of Hubei.
Abstract: This study describes possible transmission of novel coronavirus disease 2019 (COVID-19) from an asymptomatic Wuhan resident to 5 family members in Anyang, a Chinese city in the neighboring province of Hubei.

3,818 citations

Journal ArticleDOI
TL;DR: The serial respiratory viral load of SARS-CoV-2 in posterior oropharyngeal saliva samples from patients with COVID-19, and serum antibody responses from patients infected with severe acute respiratory syndrome coronavirus 2 are ascertained.
Abstract: Summary Background Coronavirus disease 2019 (COVID-19) causes severe community and nosocomial outbreaks. Comprehensive data for serial respiratory viral load and serum antibody responses from patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are not yet available. Nasopharyngeal and throat swabs are usually obtained for serial viral load monitoring of respiratory infections but gathering these specimens can cause discomfort for patients and put health-care workers at risk. We aimed to ascertain the serial respiratory viral load of SARS-CoV-2 in posterior oropharyngeal (deep throat) saliva samples from patients with COVID-19, and serum antibody responses. Methods We did a cohort study at two hospitals in Hong Kong. We included patients with laboratory-confirmed COVID-19. We obtained samples of blood, urine, posterior oropharyngeal saliva, and rectal swabs. Serial viral load was ascertained by reverse transcriptase quantitative PCR (RT-qPCR). Antibody levels against the SARS-CoV-2 internal nucleoprotein (NP) and surface spike protein receptor binding domain (RBD) were measured using EIA. Whole-genome sequencing was done to identify possible mutations arising during infection. Findings Between Jan 22, 2020, and Feb 12, 2020, 30 patients were screened for inclusion, of whom 23 were included (median age 62 years [range 37–75]). The median viral load in posterior oropharyngeal saliva or other respiratory specimens at presentation was 5·2 log10 copies per mL (IQR 4·1–7·0). Salivary viral load was highest during the first week after symptom onset and subsequently declined with time (slope −0·15, 95% CI −0·19 to −0·11; R2=0·71). In one patient, viral RNA was detected 25 days after symptom onset. Older age was correlated with higher viral load (Spearman's ρ=0·48, 95% CI 0·074–0·75; p=0·020). For 16 patients with serum samples available 14 days or longer after symptom onset, rates of seropositivity were 94% for anti-NP IgG (n=15), 88% for anti-NP IgM (n=14), 100% for anti-RBD IgG (n=16), and 94% for anti-RBD IgM (n=15). Anti-SARS-CoV-2-NP or anti-SARS-CoV-2-RBD IgG levels correlated with virus neutralisation titre (R2>0·9). No genome mutations were detected on serial samples. Interpretation Posterior oropharyngeal saliva samples are a non-invasive specimen more acceptable to patients and health-care workers. Unlike severe acute respiratory syndrome, patients with COVID-19 had the highest viral load near presentation, which could account for the fast-spreading nature of this epidemic. This finding emphasises the importance of stringent infection control and early use of potent antiviral agents, alone or in combination, for high-risk individuals. Serological assay can complement RT-qPCR for diagnosis. Funding Richard and Carol Yu, May Tam Mak Mei Yin, The Shaw Foundation Hong Kong, Michael Tong, Marina Lee, Government Consultancy Service, and Sanming Project of Medicine.

2,778 citations

Journal ArticleDOI
TL;DR: Binformatics analysis on a virus genome from a patient with 2019-nCoV infection and compared it with other related coronavirus genomes provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.
Abstract: A mysterious outbreak of atypical pneumonia in late 2019 was traced to a seafood wholesale market in Wuhan of China. Within a few weeks, a novel coronavirus tentatively named as 2019 novel coronavirus (2019-nCoV) was announced by the World Health Organization. We performed bioinformatics analysis on a virus genome from a patient with 2019-nCoV infection and compared it with other related coronavirus genomes. Overall, the genome of 2019-nCoV has 89% nucleotide identity with bat SARS-like-CoVZXC21 and 82% with that of human SARS-CoV. The phylogenetic trees of their orf1a/b, Spike, Envelope, Membrane and Nucleoprotein also clustered closely with those of the bat, civet and human SARS coronaviruses. However, the external subdomain of Spike's receptor binding domain of 2019-nCoV shares only 40% amino acid identity with other SARS-related coronaviruses. Remarkably, its orf3b encodes a completely novel short protein. Furthermore, its new orf8 likely encodes a secreted protein with an alpha-helix, following with a beta-sheet(s) containing six strands. Learning from the roles of civet in SARS and camel in MERS, hunting for the animal source of 2019-nCoV and its more ancestral virus would be important for understanding the origin and evolution of this novel lineage B betacoronavirus. These findings provide the basis for starting further studies on the pathogenesis, and optimizing the design of diagnostic, antiviral and vaccination strategies for this emerging infection.

2,403 citations


Authors

Showing all 5133 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Robert G. Webster15884390776
Ichiro Kawachi149121690282
Steven J.M. Jones137594146609
Kwok-Yung Yuen1371173100119
Peter M. Rothwell13477967382
Paul M. Vanhoutte12786862177
Pak C. Sham124866100601
Sheung Tat Fan12168153930
Chi-Ming Che121130562800
Yi Guan11737862128
Hongbo Zhu11657357329
C. C. Cheung10745643680
Daniel W. Chan10666341915
Ronnie T.P. Poon10342139804
Network Information
Related Institutions (5)
National Institutes of Health
297.8K papers, 21.3M citations

92% related

Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

91% related

University of Alabama at Birmingham
86.7K papers, 3.9M citations

91% related

Baylor College of Medicine
94.8K papers, 5M citations

91% related

Icahn School of Medicine at Mount Sinai
76K papers, 3.7M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202210
2021907
2020775
2019531
2018423
2017465