scispace - formally typeset
Search or ask a question
Institution

Mount Stromlo Observatory

EducationCanberra, Australian Capital Territory, Australia
About: Mount Stromlo Observatory is a education organization based out in Canberra, Australian Capital Territory, Australia. It is known for research contribution in the topics: Galaxy & Stars. The organization has 180 authors who have published 426 publications receiving 29440 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the star formation efficiency (SFE) per unit of gas in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds was measured, and the authors interpreted this decline as a strong dependence of giant molecular cloud (GMC) formation on environment.
Abstract: We measure the star formation efficiency (SFE), the star formation rate (SFR) per unit of gas, in 23 nearby galaxies and compare it with expectations from proposed star formation laws and thresholds. We use H I maps from The H I Nearby Galaxy Survey (THINGS) and derive H2 maps of CO measured by HERA CO-Line Extragalactic Survey and Berkeley-Illinois-Maryland Association Survey of Nearby Galaxies. We estimate the SFR by combining Galaxy Evolution Explorer (GALEX) far-ultraviolet maps and the Spitzer Infrared Nearby Galaxies Survey (SINGS) 24 ?m maps, infer stellar surface density profiles from SINGS 3.6 ?m data, and use kinematics from THINGS. We measure the SFE as a function of the free fall and orbital timescales, midplane gas pressure, stability of the gas disk to collapse (including the effects of stars), the ability of perturbations to grow despite shear, and the ability of a cold phase to form. In spirals, the SFE of H2 alone is nearly constant at (5.25 ? 2.5) ? 10?10 yr?1 (equivalent to an H2 depletion time of 1.9 ? 109 yr) as a function of all of these variables at our 800 pc resolution. Where the interstellar medium (ISM) is mostly H I, however, the SFE decreases with increasing radius in both spiral and dwarf galaxies, a decline reasonably described by an exponential with scale length 0.2r 25-0.25r 25. We interpret this decline as a strong dependence of giant molecular cloud (GMC) formation on environment. The ratio of molecular-to-atomic gas appears to be a smooth function of radius, stellar surface density, and pressure spanning from the H2-dominated to H I-dominated ISM. The radial decline in SFE is too steep to be reproduced only by increases in the free-fall time or orbital time. Thresholds for large-scale instability suggest that our disks are stable or marginally stable and do not show a clear link to the declining SFE. We suggest that ISM physics below the scales that we observe?phase balance in the H I, H2 formation and destruction, and stellar feedback?governs the formation of GMCs from H I.

1,888 citations

Journal ArticleDOI
TL;DR: In this article, a comprehensive sample of all gamma-ray burst (GRB) afterglows with known distances is presented, and their conical opening angles are derived based on observed broadband breaks in their light curves.
Abstract: We present a comprehensive sample of all gamma-ray burst (GRB) afterglows with known distances, and we derive their conical opening angles based on observed broadband breaks in their light curves. Within the framework of this conical jet model, we correct for the geometry and we find that the gamma-ray energy release is narrowly clustered around 5 × 10^(50) ergs. We draw three conclusions. First, the central engines of GRBs release energies that are comparable to ordinary supernovae. Second, the broad distribution in fluence and luminosity for GRBs is largely the result of a wide variation of opening angles. Third, only a small fraction of GRBs are visible to a given observer, and the true GRB rate is several hundred times larger than the observed rate.

1,225 citations

Journal ArticleDOI
TL;DR: In this article, rotation curves of 19 galaxies from the H I Nearby Galaxy Survey (THINGS) were used to derive the geometric and dynamical parameters using H I data alone and the rotation curves were combined with 3.6 μm data from the Spitzer Infrared Nearby Galaxies Survey to construct mass models.
Abstract: We present rotation curves of 19 galaxies from The H I Nearby Galaxy Survey (THINGS). The high spatial and velocity resolution of THINGS make these the highest quality H I rotation curves available to date for a large sample of nearby galaxies, spanning a wide range of H I masses and luminosities. The high quality of the data allows us to derive the geometric and dynamical parameters using H I data alone. We do not find any declining rotation curves unambiguously associated with a cut-off in the mass distribution out to the last measured point. The rotation curves are combined with 3.6 μm data from the Spitzer Infrared Nearby Galaxies Survey to construct mass models. Our best-fit dynamical disk masses, derived from the rotation curves, are in good agreement with photometric disk masses derived from the 3.6 μm images in combination with stellar population synthesis arguments and two different assumptions for the stellar initial mass function (IMF). We test the cold dark matter (CDM) motivated cusp model, and the observationally motivated central density core model and find that (independent of IMF) for massive, disk-dominated galaxies, all halo models fit apparently equally well; for low-mass galaxies, however, a core-dominated halo is clearly preferred over a cusp-like halo. The empirically derived densities of the dark matter halos of the late-type galaxies in our sample are half of what is predicted by CDM simulations, again independent of the assumed IMF.

948 citations

Journal ArticleDOI
TL;DR: In this paper, a large set of solar twins, stars which are spectroscopically and photometrically identical to the Sun, were used to set the absolute zero point of the effective temperature scale to within few degrees.
Abstract: Various effective temperature scales have been proposed over the years. Despite much work and the high internal precision usually achieved, systematic differences of order 100 K (or more) among various scales are still present. We present an investigation based on the infrared flux method aimed at assessing the source of such discrepancies and pin down their origin. We break the impasse among different scales by using a large set of solar twins, stars which are spectroscopically and photometrically identical to the Sun, to set the absolute zero point of the effective temperature scale to within few degrees. Our newly calibrated, accurate and precise temperature scale applies to dwarfs and subgiants, from super-solar metallicities to the most metal-poor stars currently known. At solar metallicities our results validate spectroscopic effective temperature scales, whereas for [Fe/H] < −2.5 our temperatures are roughly 100 K hotter than those determined from model fits to the Balmer lines and 200 K hotter than those obtained from the excitation equilibrium of Fe lines. Empirical bolometric corrections and useful relations linking photometric indices to effective temperatures and angular diameters have been derived. Our results take full advantage of the high accuracy reached in absolute calibration in recent years and are further validated by interferometric angular diameters and space based spectrophotometry over a wide range of effective temperatures and metallicities.

748 citations

Journal ArticleDOI
TL;DR: In this paper, an updated grid of stellar yields for low- to intermediate-mass thermally pulsing asymptotic giant branch (AGB) stars is presented, along with a finer mass grid than used in previous studies.
Abstract: An updated grid of stellar yields for low- to intermediate-mass thermally pulsing asymptotic giant branch (AGB) stars is presented. The models cover a range in metallicity Z = 0.02, 0.008, 0.004 and 0.0001, and masses between 1 and 6M ⊙ . New intermediate-mass (M ≥ 3 M ⊙ ) Z = 0.0001 AGB models are also presented, along with a finer mass grid than used in previous studies. The yields are computed using an updated reaction rate network that includes the latest NeNa and MgAl proton capture rates, with the main result that between ∼6 and 30 times less Na is produced by intermediate-mass models with hot bottom burning. In low-mass AGB models, we investigate the effect, on the production of light elements, of including some partial mixing of protons into the intershell region during the deepest extent of each third dredge-up episode. The protons are captured by the abundant 12 C to form a 13 C pocket. The 13 C pocket increases the yields of 19 F, 23 Na, the neutron-rich Mg and Si isotopes, 60 Fe and 31 P. The increase in 31 P is by factors of ∼4 to 20, depending on the metallicity. Any structural changes caused by the addition of the 13 C pocket into the He intershell are ignored. However, the models considered are of low mass and any such feedback is likely to be small. Further study is required to test the accuracy of the yields from the partial-mixing models. For each mass and metallicity, the yields are presented in a tabular form suitable for use in galactic chemical evolution studies or for comparison to the composition of planetary nebulae.

661 citations


Authors

Showing all 180 results

NameH-indexPapersCitations
Kenneth C. Freeman12387954401
Martin Asplund11861252527
Simon P. Driver10945546299
Michael A. Dopita10562142007
Robert J. Norman10375545147
Bruce A. Peterson10240448598
Brian P. Schmidt10142080360
Lisa J. Kewley9839738530
John E. Norris9130627037
Alister W. Graham8429321102
W. J. G. de Blok8329929766
Michael S. Bessell8339024374
Jeremy Mould8242231933
Norbert Christlieb8130519927
Rob Sharp7829620356
Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20216
202011
20196
201810
201714
201615