scispace - formally typeset
Search or ask a question
Institution

National Marine Fisheries Service

GovernmentSilver Spring, Maryland, United States
About: National Marine Fisheries Service is a government organization based out in Silver Spring, Maryland, United States. It is known for research contribution in the topics: Population & Fisheries management. The organization has 3949 authors who have published 7053 publications receiving 305073 citations. The organization is also known as: NOAA Fisheries & NOAA National Marine Fisheries Service.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examine how climate variations influence the boundaries of suitable ocean habitat, and how these changes affect the spatial distribution and interactions between forage fishes in the southeastern Bering Sea shelf.
Abstract: This paper examines how climate variations influence the boundaries of suitable ocean habitat, and how these changes affect the spatial distribution and interactions between forage fishes in the southeastern Bering Sea shelf. The study focuses on the summer distributions of forage fish age-0 and age-1 walleye pollock, Theragra chalcogramma, and capelin, Mallotus villosus, observed during National Marine Fisheries Service summer acoustic trawl, surface trawl and bottom trawl surveys conducted in the Bering Sea between 2004 and 2009. We compare the responses of these forage fish to climate-induced shifts in ocean habitats. Habitat boundaries were defined using key explanatory variables including depth, bottom temperature and surface temperature, using general additive models. Bathymetry, bottom temperature and frontal zones formed boundaries between different groups of forage fishes. Age-0 pollock were dispersed throughout the middle domain (50–100 m depth) in well-stratified regions. In cold years the highest densities of age-0s were found in the southern regions of the middle domain waters in waters warmer than approximately 1 °C. In contrast, age-1 pollock were observed on the sea floor over the middle domain and in midwater in the northern outer domain in cold years and more broadly dispersed across the middle and outer domain in warm years. The demersal concentrations of age-1 pollock in the middle domain shows age-1 pollock tolerate a wide range of bottom temperatures. Midwater and demersal distributions of age-1 pollock exhibited a patchier distribution than age-0 pollock. Midwater concentrations of age-1 pollock tended to be associated with the outer domain and regions where higher levels of lower trophic level production are expected. Capelin were concentrated in the inner domain, a well-mixed region. The overlap of age-1 pollock and capelin was higher in cold years than in warm years.

87 citations

Journal ArticleDOI
TL;DR: While some individuals made large-scale movements over open ocean areas, the results emphasize the importance of the coastal zone for this species as potential essential habitat, particularly in areas of high freshwater inflow.
Abstract: Habitat use, movement and residency of bull sharks Carcharhinus leucas were determined using satellite pop-up archival transmitting (PAT) tags throughout coastal areas in the U.S., Gulf of Mexico and waters off the south-east U.S. From 2005 to 2007, 18 fish (mean size = 164 cm fork length, L(F)) were tagged over all seasons. Fish retained tags for up to 85 days (median = 30 days). Based on geolocation data from initial tagging location to pop-off location, C. leucas generally travelled c. 5-6 km day(-1) and travelled an average of 143.6 km. Overall, mean proportions of time at depth revealed C. leucas spent the majority of their time in waters <20 m. They exhibited significant differences among depths but were not found at a particular depth regardless of diurnal period. Most fish occupied temperatures c. 32 degrees C with individuals found mostly between 26 and 33 degrees C. Geolocation data for C. leucas were generally poor and varied considerably but tracks for two individuals revealed long distance movements. One fish travelled from the south-east coast of the U.S. to coastal Texas near Galveston while another moved up the east coast of the U.S. to South Carolina. Data on C. leucas movements indicated that they are found primarily in shallower waters and tend to remain in the same location over long periods. While some individuals made large-scale movements over open ocean areas, the results emphasize the importance of the coastal zone for this species as potential essential habitat, particularly in areas of high freshwater inflow.

87 citations

Journal ArticleDOI
TL;DR: This article used past biophysical relationships as a guide to predict the impacts of future climate change assuming that the observed relationships will remain constant, but this assumption involves a long chain of uncertainty about future greenhouse gas emissions, climate sensitivity to changes in greenhouse gases, and the ecological consequences of climate change.
Abstract: As climate change intensifies, there is increasing interest in developing models that reduce uncertainties in projections of global climate and refine these projections to finer spatial scales. Forecasts of climate impacts on ecosystems are far more challenging and their uncertainties even larger because of a limited understanding of physical controls on biological systems. Management and conservation plans that explicitly account for changing climate are rare and even those generally rely on retrospective analyses rather than future scenarios of climatic conditions and associated responses of specific ecosystems. Using past biophysical relationships as a guide to predicting the impacts of future climate change assumes that the observed relationships will remain constant. However, this assumption involves a long chain of uncertainty about future greenhouse gas emissions, climate sensitivity to changes in greenhouse gases, and the ecological consequences of climate change. These uncertainties in f...

87 citations

Journal ArticleDOI
TL;DR: The results challenge previous suggestions that there is little association between the fields of behavioral ecology and conservation and reveals tremendous variation in the use of different behaviors in conservation.
Abstract: The role of behavioral ecology in improving wildlife conservation and management has been the subject of much recent debate. We sought to answer 2 foundational questions about the current use of behavioral knowledge in conservation: To what extent is behavioral knowledge used in wildlife conservation and management, and how does the use of animal behavior differ among conservation fields in both frequency and types of use? We searched the literature for intersections between key fields of animal behavior and conservation and created a systematic heat map (i.e., graphical representation of data where values are represented as colors) to visualize relative efforts. Some behaviors, such as dispersal and foraging, were commonly considered (mean [SE] of 1147.38 [353.11] and 439.44 [108.85] papers per cell, respectively). In contrast, other behaviors, such as learning, social, and antipredatory behaviors were rarely considered (mean [SE] of 33.88 [7.62], 44.81 [10.65], and 22.69 [6.37] papers per cell, respectively). In many cases, awareness of the importance of behavior did not translate into applicable management tools. Our results challenge previous suggestions that there is little association between the fields of behavioral ecology and conservation and reveals tremendous variation in the use of different behaviors in conservation. We recommend that researchers focus on examining underutilized intersections of behavior and conservation themes for which preliminary work shows a potential for improving conservation and management, translating behavioral theory into applicable and testable predictions, and creating systematic reviews to summarize the behavioral evidence within the behavior-conservation intersections for which many studies exist.

87 citations

Journal ArticleDOI
TL;DR: Methods for quantifying the drag costs from animal-borne instrumentation considering the instrument retention time (time to release from the animal) and the activity of the instrumented animal are outlined, leading to greater biological realism in the collected data.
Abstract: Summary 1. Animal-borne instruments provide researchers with valuable data to address important questions on wildlife ecology and conservation. However, these devices have known impacts on animal behaviour and energetics. Tags deployed on migrating animals may reduce reproductive output through increased energy demands or cause phenological mismatches of foraging and nesting events. For marine organisms, the only tagging guidelines that exist are based on lift and thrust impacts on birds – concepts that do not translate well to aquatic animals. Herein, we provide guidelines on assessing drag from animal-borne instruments and discuss the ecological impacts on marine organisms. Of particular concern is the effect of drag from instruments to the welfare of the animals and for the applicability of collected data to wild populations. 2. To help understand how drag from electronic tags affects marine animals in the wild, we used marine turtles as model aquatic organisms and conducted wind tunnel experiments to measure the fluid drag of various marine turtle body types with and without commercially available electronic tags (e.g. satellite, TDR, video cameras). We quantified the drag associated with carrying biotelemetry devices of varying frontal area and design (squared or tear drop shaped) and generated contour plots depicting percentage drag increase as a framework for evaluating tag drag by scientists and wildlife managers. Then, using concepts of fluid dynamics, we derived a universal equation estimating drag impacts from instruments across marine taxa. 3. The drag of the marine turtle casts was measured in wind speeds from 2 to 30 m s 1 (Re 30 9 10 4 – 19 9 10 6 ), equivalent to 01–1 9ms 1 in seawater. The drag coefficient (CD) of the marine turtles ranged from 011 to 022, which is typical of other large, air-breathing, marine vertebrates (008–026). The CD of tags in reference to the turtle casts was 091 018 and most tags caused minimal additional drag ( 100%). The sensitivity of aquatic animals to instrument drag is a dynamic relationship between the fluid flow patterns, or CD, and the frontal area ratio of the animal and tag. 4. In this paper, we have outlined methods for quantifying the drag costs from animal-borne instrumentation considering the instrument retention time (time to release from the animal) and the activity of the instrumented animal. With this valuable tool, researchers can quantify the drag costs from animal-borne instrumentation and choose appropriate tags for their intended study organism and question. Reducing drag will ultimately reduce the impact on the instrumented animals and lead to greater biological realism in the collected data.

87 citations


Authors

Showing all 3963 results

NameH-indexPapersCitations
Thomas N. Williams132114595109
Thomas P. Quinn9645533939
Michael P. Carey9046327005
Rebecca Fisher8625550260
Peter Kareiva8426033352
Daniel E. Schindler6922218359
Robin S. Waples6919522752
Ronald W. Hardy6420214145
Kenneth E. Sherman6434815934
André E. Punt6340016532
Jason S. Link6021712799
William G. Sunda5710313933
Steven J. Bograd5722012511
Walton W. Dickhoff561308507
Jay Barlow552419939
Network Information
Related Institutions (5)
Fisheries and Oceans Canada
6.2K papers, 223K citations

95% related

Australian Institute of Marine Science
3.5K papers, 221.2K citations

91% related

IFREMER
12.3K papers, 468.8K citations

90% related

Plymouth Marine Laboratory
3.5K papers, 231.3K citations

90% related

United States Fish and Wildlife Service
8.6K papers, 264K citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20232
202223
2021344
2020297
2019302
2018280