scispace - formally typeset
Search or ask a question
Institution

Palacký University, Olomouc

EducationOlomouc, Czechia
About: Palacký University, Olomouc is a education organization based out in Olomouc, Czechia. It is known for research contribution in the topics: Population & Cancer. The organization has 3929 authors who have published 6985 publications receiving 164352 citations.
Topics: Population, Cancer, Medicine, Catalysis, DNA damage


Papers
More filters
Journal ArticleDOI
TL;DR: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,† Vimlesh Chandra, Namdong Kim, K. Kim,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim.
Abstract: Approaches, Derivatives and Applications Vasilios Georgakilas,† Michal Otyepka,‡ Athanasios B. Bourlinos,‡ Vimlesh Chandra, Namdong Kim, K. Christian Kemp, Pavel Hobza,‡,§,⊥ Radek Zboril,*,‡ and Kwang S. Kim* †Institute of Materials Science, NCSR “Demokritos”, Ag. Paraskevi Attikis, 15310 Athens, Greece ‡Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic Center for Superfunctional Materials, Department of Chemistry, Pohang University of Science and Technology, San 31, Hyojadong, Namgu, Pohang 790-784, Korea Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo naḿ. 2, 166 10 Prague 6, Czech Republic

3,460 citations

Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: Insight is gained into the common pathways of tumour evolution that could support the development of future therapeutic strategies and shape the evolution of the cancer genome through a plethora of mechanisms.
Abstract: Recent studies have revealed extensive genetic diversity both between and within tumours. This heterogeneity affects key cancer pathways, driving phenotypic variation, and poses a significant challenge to personalized cancer medicine. A major cause of genetic heterogeneity in cancer is genomic instability. This instability leads to an increased mutation rate and can shape the evolution of the cancer genome through a plethora of mechanisms. By understanding these mechanisms we can gain insight into the common pathways of tumour evolution that could support the development of future therapeutic strategies.

1,922 citations

Journal ArticleDOI
TL;DR: A critical appraisal of different synthetic approaches to Cu and Cu-based nanoparticles and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications in catalysis.
Abstract: The applications of copper (Cu) and Cu-based nanoparticles, which are based on the earth-abundant and inexpensive copper metal, have generated a great deal of interest in recent years, especially in the field of catalysis. The possible modification of the chemical and physical properties of these nanoparticles using different synthetic strategies and conditions and/or via postsynthetic chemical treatments has been largely responsible for the rapid growth of interest in these nanomaterials and their applications in catalysis. In addition, the design and development of novel support and/or multimetallic systems (e.g., alloys, etc.) has also made significant contributions to the field. In this comprehensive review, we report different synthetic approaches to Cu and Cu-based nanoparticles (metallic copper, copper oxides, and hybrid copper nanostructures) and copper nanoparticles immobilized into or supported on various support materials (SiO2, magnetic support materials, etc.), along with their applications i...

1,823 citations

Journal ArticleDOI
TL;DR: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes, and graphene analogues.
Abstract: This Review focuses on noncovalent functionalization of graphene and graphene oxide with various species involving biomolecules, polymers, drugs, metals and metal oxide-based nanoparticles, quantum dots, magnetic nanostructures, other carbon allotropes (fullerenes, nanodiamonds, and carbon nanotubes), and graphene analogues (MoS2, WS2). A brief description of π–π interactions, van der Waals forces, ionic interactions, and hydrogen bonding allowing noncovalent modification of graphene and graphene oxide is first given. The main part of this Review is devoted to tailored functionalization for applications in drug delivery, energy materials, solar cells, water splitting, biosensing, bioimaging, environmental, catalytic, photocatalytic, and biomedical technologies. A significant part of this Review explores the possibilities of graphene/graphene oxide-based 3D superstructures and their use in lithium-ion batteries. This Review ends with a look at challenges and future prospects of noncovalently modified graph...

1,799 citations


Authors

Showing all 3986 results

NameH-indexPapersCitations
Yusuke Yamauchi117100051685
Andrey L. Rogach11757646820
Patrik Schmuki10976352669
Pavel Hobza10756448080
Libor Nozka10471841160
Petr Hamal10167339645
Aharon Gedanken9686138974
Rajender S. Varma9567237083
Miroslav Hrabovsky9159530898
Ladislav Chytka8652326886
Giulio Marchesini8247437209
Yrjö T. Konttinen8059228008
Miroslav Strnad7547820220
Radek Zboril7435929404
Jiri Kvita7416227036
Network Information
Related Institutions (5)
University of Turin
77.9K papers, 2.4M citations

89% related

University of Münster
69K papers, 2.2M citations

89% related

University of Würzburg
62.2K papers, 2.3M citations

88% related

University of Milan
139.7K papers, 4.6M citations

88% related

Sapienza University of Rome
155.4K papers, 4.3M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202324
202291
2021544
2020645
2019529
2018512