scispace - formally typeset
Search or ask a question
Institution

Sloan Fellows

About: Sloan Fellows is a based out in . It is known for research contribution in the topics: Galaxy & Star formation. The organization has 55 authors who have published 253 publications receiving 35008 citations. The organization is also known as: Sloan Fellows.
Topics: Galaxy, Star formation, Quasar, Stars, Redshift


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors proposed an extension of Schwarzschild's orbit superposition technique to construct galaxy models that match an arbitrary set of observational constraints, without prior assumptions about the phase space distribution function (DF).
Abstract: We describe an improved, practical method for constructing galaxy models that match an arbitrary set of observational constraints, without prior assumptions about the phase-space distribution function (DF). Our method is an extension of Schwarzschild's orbit superposition technique. As in Schwarzschild's original implementation, we compute a representative library of orbits in a given potential. We then project each orbit onto the space of observables, consisting of position on the sky and line-of-sight velocity, while properly taking into account seeing convolution and pixel binning. We find the combination of orbits that produces a dynamical model that best fits the observed photometry and kinematics of the galaxy. A new element of this work is the ability to predict and match to the data the full line-of-sight velocity profile shapes. A dark component (such as a black hole and/or a dark halo) can easily be included in the models. In an earlier paper (Rix et al.) we described the basic principles and implemented them for the simplest case of spherical geometry. Here we focus on the axisymmetric case. We first show how to build galaxy models from individual orbits. This provides a method to build models with fully general DFs, without the need for analytic integrals of motion. We then discuss a set of alternative building blocks, the two-integral and the isotropic components, for which the observable properties can be computed analytically. Models built entirely from the two-integral components yield DFs of the form f(E, Lz), which depend only on the energy E and angular momentum Lz. This provides a new method to construct such models. The smoothness of the two-integral and isotropic components also makes them convenient to use in conjunction with the regular orbits. We have tested our method by using it to reconstruct the properties of a two-integral model built with independent software. The test model is reproduced satisfactorily, either with the regular orbits, or with the two-integral components. This paper mainly deals with the technical aspects of the method, while applications to the galaxies M32 and NGC 4342 are described elsewhere (van der Marel et al.; Cretton & van den Bosch).

145 citations

Journal ArticleDOI
TL;DR: In this paper, the uncertainties of the single-epoch (SE) method were investigated using homogeneous and high-quality multepoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }.
Abstract: We investigate the calibration and uncertainties of black hole (BH) mass estimates based on the single-epoch (SE) method, using homogeneous and high-quality multi-epoch spectra obtained by the Lick Active Galactic Nucleus (AGN) Monitoring Project for nine local Seyfert 1 galaxies with BH masses <10{sup 8} M{sub Sun }. By decomposing the spectra into their AGNs and stellar components, we study the variability of the SE H{beta} line width (full width at half-maximum intensity, FWHM{sub H{beta}} or dispersion, {sigma}{sub H{beta}}) and of the AGN continuum luminosity at 5100 A (L{sub 5100}). From the distribution of the 'virial products' ({proportional_to} FWHM{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100} or {sigma}{sub H{beta}}{sup 2} L{sup 0.5}{sub 5100}) measured from SE spectra, we estimate the uncertainty due to the combined variability as {approx}0.05 dex (12%). This is subdominant with respect to the total uncertainty in SE mass estimates, which is dominated by uncertainties in the size-luminosity relation and virial coefficient, and is estimated to be {approx}0.46 dex (factor of {approx}3). By comparing the H{beta} line profile of the SE, mean, and root-mean-square (rms) spectra, we find that the H{beta} line is broader in the mean (and SE) spectra than in the rms spectra by {approx}0.1 dex (25%)more » for our sample with FWHM{sub H{beta}} <3000 km s{sup -1}. This result is at variance with larger mass BHs where the difference is typically found to be much less than 0.1 dex. To correct for this systematic difference of the H{beta} line profile, we introduce a line-width dependent virial factor, resulting in a recalibration of SE BH mass estimators for low-mass AGNs.« less

144 citations

Journal ArticleDOI
TL;DR: In this article, the authors provided a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes.
Abstract: We provide a revised assessment of the number of exoplanets that should be discovered by Gaia astrometry, extending previous studies to a broader range of spectral types, distances, and magnitudes. Our assessment is based on a large representative sample of host stars from the TRILEGAL Galaxy population synthesis model, recent estimates of the exoplanet frequency distributions as a function of stellar type, and detailed simulation of the Gaia observations using the updated instrument performance and scanning law. We use two approaches to estimate detectable planetary systems: one based on the S/N of the astrometric signature per field crossing, easily reproducible and allowing comparisons with previous estimates, and a new and more robust metric based on orbit fitting to the simulated satellite data. With some plausible assumptions on planet occurrences, we find that some 21,000 (+/-6000) high-mass (1-15M_J) long-period planets should be discovered out to distances of ~500pc for the nominal 5-yr mission (including at least 1000-1500 around M dwarfs out to 100pc), rising to some 70,000 (+/-20,000) for a 10-yr mission. We indicate some of the expected features of this exoplanet population, amongst them ~25-50 intermediate-period (P~2-3yr) transiting systems.

143 citations

Journal ArticleDOI
TL;DR: In this paper, a non-uniform adaptive grid was developed to reconstruct the mass of the Bullet cluster 1E0657-56 (z = 0.296) by combining strong and weak gravitational lensing data derived from deep Hubble Space Telescope/Advanced Camera for Surveys F606W-F775W-−F850LP and ground-based imaging.
Abstract: The gravitational potential of clusters of galaxies acts as a cosmic telescope allowing us to find and study galaxies at fainter limits than otherwise possible and thus probe closer to the epoch of formation of the first galaxies. We use the Bullet cluster 1E0657 – 56 (z = 0.296) as a case study, because its high mass and merging configuration makes it one of the most efficient cosmic telescopes we know. We develop a new algorithm to reconstruct the gravitational potential of the Bullet cluster based on a non-uniform adaptive grid, combining strong and weak gravitational lensing data derived from deep Hubble Space Telescope/Advanced Camera for Surveys F606W–F775W–F850LP and ground-based imaging. We exploit this improved mass map to study z ~ 5-6 Lyman break galaxies (LBGs), which we detect as dropouts. One of the LBGs is multiply imaged, providing a geometric confirmation of its high redshift, and is used to further improve our mass model. We quantify the uncertainties in the magnification map reconstruction in the intrinsic source luminosity, and in the volume surveyed, and show that they are negligible compared to sample variance when determining the luminosity function of high-redshift galaxies. With shallower and comparable magnitude limits to Hubble Ultra Deep Field (HUDF) and Great Observatories Origins Deep Survey (GOODS), the Bullet cluster observations, after correcting for magnification, probe deeper into the luminosity function of the high-redshift galaxies than GOODS and only slightly shallower than HUDF. We conclude that accurately focused cosmic telescopes are the most efficient way to sample the bright end of the luminosity function of high-redshift galaxies and—in case they are multiply imaged—confirm their redshifts.

142 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo and showed that the spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits.
Abstract: We study the radial migration of stars driven by recurring multi-arm spiral features in an exponential disk embedded in a dark matter halo. The spiral perturbations redistribute angular momentum within the disk and lead to substantial radial displacements of individual stars, in a manner that largely preserves the circularity of their orbits and that results, after 5 Gyr (~40 full rotations at the disk scale length), in little radial heating and no appreciable changes to the vertical or radial structure of the disk. Our results clarify a number of issues related to the spatial distribution and kinematics of migrators. In particular, we find that migrators are a heavily biased subset of stars with preferentially low vertical velocity dispersions. This "provenance bias" for migrators is not surprising in hindsight, for stars with small vertical excursions spend more time near the disk plane, and thus respond more readily to non-axisymmetric perturbations. We also find that the vertical velocity dispersion of outward migrators always decreases, whereas the opposite holds for inward migrators. To first order, newly arrived migrators simply replace stars that have migrated off to other radii, thus inheriting the vertical bias of the latter. Extreme migrators might therefore be recognized, if present, by the unexpectedly small amplitude of their vertical excursions. Our results show that migration, understood as changes in angular momentum that preserve circularity, can strongly affect the thin disk, but cast doubts on models that envision the Galactic thick disk as a relic of radial migration.

141 citations


Authors

Showing all 55 results

NameH-indexPapersCitations
Daniel J. Eisenstein179672151720
Lars Hernquist14859888554
Tommaso Treu12671549090
Julio F. Navarro11337672998
Matthias Steinmetz11246167802
Roger W. Romani10845343942
Lars Hernquist10436332661
Jo Bovy10326351193
Henk Hoekstra10242136597
Joshua S. Bloom10237838877
Bryan Gaensler9984439851
Puragra Guhathakurta9947731478
Alice E. Shapley9825542148
Wayne Hu9830833371
R. Michael Rich9736932076
Network Information
Related Institutions (5)
Space Telescope Science Institute
14.1K papers, 947.2K citations

83% related

Institut d'Astrophysique de Paris
7.6K papers, 491.5K citations

83% related

Smithsonian Astrophysical Observatory
3.6K papers, 132.1K citations

83% related

National Radio Astronomy Observatory
8.1K papers, 431.1K citations

83% related

Herzberg Institute of Astrophysics
3K papers, 156.7K citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20181
20156
201418
201329
201223
201124