scispace - formally typeset
Search or ask a question
Institution

Vestas

CompanyAarhus, Denmark
About: Vestas is a company organization based out in Aarhus, Denmark. It is known for research contribution in the topics: Turbine & Wind power. The organization has 1075 authors who have published 1519 publications receiving 23285 citations. The organization is also known as: Vestas Wind Systems & Vestas Wind Systems A/S.


Papers
More filters
Patent
Peter De Place Rimmen1
01 Nov 2005
TL;DR: In this paper, a method for prolonging and controlling the life of one or more heat generating and/or passive components (8) in a wind turbine by controlling the cooling down procedure of said one of the components was presented.
Abstract: The invention relates to a method for prolonging and/or controlling the life of one or more heat generating and/or passive components (8) in a wind turbine (1), by controlling the cooling down procedure of said one or more heat generating and/or passive components (8), by controlling the temperature of said one or more heat generating and/or passive components (8). The invention further relates to a wind turbine (1) and use hereof.

30 citations

Proceedings ArticleDOI
01 Nov 2013
TL;DR: Both component-level and chip-level dynamic thermal models for the PP IGBT under investigation are developed using geometric parameters and material properties of the device and the thermal impedance curves under various mechanical clamping conditions are derived.
Abstract: Thermal models are needed when designing power converters for Wind Turbines (WTs) in order to carry out thermal and reliability assessment of certain designs. Usually the thermal models of Insulated Gate Bipolar Transistors (IGBTs) are given in the datasheet in various forms at component-level, not taking into account the thermal distribution among the chips. This is especially relevant in the case of Press-Pack (PP) IGBTs because any non-uniformity of the clamping pressure can affect the chip-level thermal impedances. This happens because the contact thermal resistances in the thermal impedance chains are clamping pressure dependent. In this paper both component-level and chip-level dynamic thermal models for the PP IGBT under investigation are developed. Both models are developed using geometric parameters and material properties of the device. Using the thermal models, the thermal impedance curves under various mechanical clamping conditions are derived. Moreover, the deformation of the internal components of the PP IGBT under operating-like conditions is investigated with the help of the thermal models and the coefficient of thermal expansion (CTE) information.

30 citations

Patent
Jensen Jan Bisgaard1
03 Jul 2007
TL;DR: A wind turbine testing system is described in this paper for testing at least part of the nacelle components of a wind turbine system when mounted on a load carrying structure of a Nacelle.
Abstract: A wind turbine testing system is disclosed for testing at least a part of the nacelle components of a wind turbine system when mounted on a load carrying structure of a nacelle, said wind turbine testing system comprising a test bench being arranged to hold said load carrying structure including said nacelle components, a grid simulation system comprising a power converter system and a simulation controller being arranged to be electrically coupled to at least one of said nacelle components and being adapted for providing a simulated utility grid on the basis of a power supply and at least one control signal established by said simulation controller, and a wind simulation system comprising a wind turbine shaft rotating means arranged to be coupled to a rotating part of said generator system or a generator-related system of a nacelle or a part of a nacelle located in said test bench.

30 citations

Patent
Anton Bech1
21 Feb 2007
TL;DR: In this article, a wind turbine rotor with at least one blade and at least on pitch mechanism comprising a ring-shaped motor for controlling the blade is described, and a rotation controlling mechanism is described.
Abstract: The invention relates to a wind turbine rotor comprising at least one blade and at least on pitch mechanism comprising a ring shaped motor for controlling the blade. The wind turbine rotor is characterized in that, the ring shaped motor controls the blade through gearing means of a planetary type. The invention further relates to a rotation controlling mechanism comprising, at least one ring shaped motor for controlling the rotation of at least one first part in relation to at least one second part. The rotation controlling mechanism is characterized in that, the ring shaped motor controls the relative rotation through gearing means of a planetary type. Even further the invention relates to a method for controlling at least one blade of a wind turbine rotor.

30 citations

Patent
29 Oct 2008
TL;DR: In this article, a wind turbine blade with fast-responding lift-regulating means is provided, where the actuation controller is a force sensor adapted for sensing a force from a wind flow acting on the lift regulating means.
Abstract: Wind turbine blade (1) comprising a blade body (2) and lift-regulating means (3, 7) adapted for movement in relation to the blade body (2) by at least one actuation means (4) controlled by an actuation controller (5), wherein the actuation controller (5) controls a setting of the lift-regulating means (3, 7) based on an input from a sensor (6), wherein the sensor (6) is a force sensor adapted for sensing a force from a wind flow acting on the lift-regulating means (3, 7), whereby a wind turbine blade with fast-responding lift-regulating means is provided.

30 citations


Authors

Showing all 1077 results

NameH-indexPapersCitations
Remus Teodorescu8460638521
Pedro Rodriguez6749624551
Saurabh Gupta385455907
Florin Iov321664225
Cher Ming Tan312853666
Philip Carne Kjaer26972315
Martin G. Evans25554712
Peter Fogh Odgaard23952515
Lars Helle23722881
Torben Knudsen231162157
Jan-Willem van Wingerden211512554
Daniel E. Viassolo21681125
Lars Finn Sloth Larsen20731260
Anton Bech19691128
Mark Hancock1644994
Network Information
Related Institutions (5)
Hydro-Québec
4.4K papers, 100.8K citations

79% related

Lappeenranta University of Technology
9.8K papers, 267.9K citations

79% related

Electric Power Research Institute
27K papers, 269.5K citations

78% related

École de technologie supérieure
8K papers, 124.2K citations

77% related

Supélec
6.6K papers, 121.8K citations

77% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20222
202124
202090
201982
201853
201764