scispace - formally typeset
Search or ask a question
Institution

Yerevan Physics Institute

FacilityYerevan, Armenia
About: Yerevan Physics Institute is a facility organization based out in Yerevan, Armenia. It is known for research contribution in the topics: Large Hadron Collider & Higgs boson. The organization has 1373 authors who have published 3433 publications receiving 131105 citations. The organization is also known as: YerPhI.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +5117 moreInstitutions (314)
TL;DR: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4ℓ decay channels.
Abstract: A measurement of the Higgs boson mass is presented based on the combined data samples of the ATLAS and CMS experiments at the CERN LHC in the H→γγ and H→ZZ→4l decay channels. The results are obtained from a simultaneous fit to the reconstructed invariant mass peaks in the two channels and for the two experiments. The measured masses from the individual channels and the two experiments are found to be consistent among themselves. The combined measured mass of the Higgs boson is mH=125.09±0.21 (stat)±0.11 (syst) GeV.

1,567 citations

Journal ArticleDOI
K. Aamodt1, A. Abrahantes Quintana, R. Achenbach2, S. Acounis3  +1151 moreInstitutions (76)
TL;DR: The Large Ion Collider Experiment (ALICE) as discussed by the authors is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model.
Abstract: ALICE (A Large Ion Collider Experiment) is a general-purpose, heavy-ion detector at the CERN LHC which focuses on QCD, the strong-interaction sector of the Standard Model. It is designed to address the physics of strongly interacting matter and the quark-gluon plasma at extreme values of energy density and temperature in nucleus-nucleus collisions. Besides running with Pb ions, the physics programme includes collisions with lighter ions, lower energy running and dedicated proton-nucleus runs. ALICE will also take data with proton beams at the top LHC energy to collect reference data for the heavy-ion programme and to address several QCD topics for which ALICE is complementary to the other LHC detectors. The ALICE detector has been built by a collaboration including currently over 1000 physicists and engineers from 105 Institutes in 30 countries. Its overall dimensions are 161626 m3 with a total weight of approximately 10 000 t. The experiment consists of 18 different detector systems each with its own specific technology choice and design constraints, driven both by the physics requirements and the experimental conditions expected at LHC. The most stringent design constraint is to cope with the extreme particle multiplicity anticipated in central Pb-Pb collisions. The different subsystems were optimized to provide high-momentum resolution as well as excellent Particle Identification (PID) over a broad range in momentum, up to the highest multiplicities predicted for LHC. This will allow for comprehensive studies of hadrons, electrons, muons, and photons produced in the collision of heavy nuclei. Most detector systems are scheduled to be installed and ready for data taking by mid-2008 when the LHC is scheduled to start operation, with the exception of parts of the Photon Spectrometer (PHOS), Transition Radiation Detector (TRD) and Electro Magnetic Calorimeter (EMCal). These detectors will be completed for the high-luminosity ion run expected in 2010. This paper describes in detail the detector components as installed for the first data taking in the summer of 2008.

1,218 citations

Journal ArticleDOI
Felix Aharonian1, A. G. Akhperjanian1, A. R. Bazer-Bachi, M. Beilicke1, Wystan Benbow1, David Berge1, Konrad Bernlöhr1, Catherine Boisson, O. Bolz1, V. Borrel2, Ilana M. Braun1, E. Brion, A. M. Brown3, Rolf Bühler1, I. Büsching4, Timothé Boutelier5, Svenja Carrigan1, P. M. Chadwick3, L.-M. Chounet, G. Coignet, R. Cornils1, Luigi Costamante1, B. Degrange, Hugh Dickinson3, A. Djannati-Ataï, L. O'Connor-Drury6, Guillaume Dubus, Kathrin Egberts1, Dimitrios Emmanoulopoulos7, P. Espigat, C. Farnier, F. Feinstein, E. Ferrero1, A. Fiasson, G. Fontaine, Seb. Funk1, M. Fuling1, Y. A. Gallant, B. Giebels, J.F. Glicenstein, B. Glück8, P. Goret, C. Hadjichristidis3, D. Hauser1, M. Hauser7, G. Heinzelmann9, Gilles Henri5, German Hermann1, Jim Hinton1, A. Hoffmann10, Werner Hofmann1, M. Holleran4, S. Hoppe1, Dieter Horns1, A. Jacholkowska, O. C. de Jager4, Eckhard Kendziorra10, M. Kerschhaggl11, B. Khélifi, Nu. Komin, K. Kosack1, G. Lamanna, I. J. Latham3, R. Le Gallou3, Anne Lemiere, M. Lemoine-Goumard, Thomas Lohse11, Jean Michel Martin, Olivier Martineau-Huynh, A. Marcowith, Conor Masterson1, Gilles Maurin, T. J. L. McComb3, Emmanuel Moulin, M. de Naurois1, D. Nedbal1, S. J. Nolan3, A. Noutsos12, J.-P. Olive, K. J. Orford1, J. L. Osborne1, M. Panter1, Guy Pelletier5, P.-O. Petrucci, S. Pita, G. Pühlhofer1, Michael Punch, S. Ranchon, B. C. Raubenheimer4, M. Raue1, S. M. Rayner3, A. Reimer5, Olaf Reimer5, J. Ripken9, L. Rob13, L. Rolland, S. Rosier-Lees, Gavin Rowell1, V. Sahakian14, Andrea Santangelo1, L. Saugé5, S. Schlenker11, Reinhard Schlickeiser15, R. Schröder15, U. Schwanke11, S. Schwarzburg10, S. Schwemmer7, A. Shalchi15, Helene Sol, D. Spangler3, Felix Spanier5, R. Steenkamp16, C. Stegmann8, G. Superina, P. H. Tam7, J. P. Tavernet, Regis Terrier, M. Tluczykont, C. van Eldik1, G. Vasileiadis, Christo Venter4, J. P. Vialle, P. Vincent, Heinrich J. Völk1, Stefan Wagner7, Martin Ward3 
TL;DR: In this paper, the average flux observed during an extreme gamma-ray outburst is I(>200 GeV) = (1.72$\pm$$0.05_{\rm stat}
Abstract: The high-frequency peaked BL Lac PKS 2155-304 at redshift z=0.116 is a well-known VHE (>100 GeV) gamma-ray emitter. Since 2002 its VHE flux has been monitored using the H.E.S.S. stereoscopic array of imaging atmospheric-Cherenkov telescopes in Namibia. During the July 2006 dark period, the average VHE flux was measured to be more than ten times typical values observed from the object. This article focuses solely on an extreme gamma-ray outburst detected in the early hours of July 28, 2006 (MJD 53944). The average flux observed during this outburst is I(>200 GeV) = (1.72$\pm$$0.05_{\rm stat}$$\pm$$0.34_{\rm syst}$) $\times$ 10$^{-9}$ cm$^{-2}$ s$^{-1}$, corresponding to ~7 times the flux, I(>200 GeV), observed from the Crab Nebula. Peak fluxes are measured with one-minute time scale resolution at more than twice this average value. Variability is seen up to ~600 s in the Fourier power spectrum, and well-resolved bursts varying on time scales of ~200 seconds are observed. There are no strong indications for spectral variability within the data. Assuming the emission region has a size comparable to the Schwarzschild radius of a ~10$^9 M_\odot$ black hole, Doppler factors greater than 100 are required to accommodate the observed variability time scales.

788 citations

Journal ArticleDOI
Felix Aharonian1, A. G. Akhperjanian1, A. R. Bazer-Bachi, M. Beilicke1, Wystan Benbow1, David Berge1, Konrad Bernlöhr, Catherine Boisson2, O. Bolz1, V. Borrel, Ilana M. Braun1, F. Breitling, A. M. Brown3, Rolf Bühler1, I. Büsching4, Svenja Carrigan1, P. M. Chadwick3, L.-M. Chounet, R. Cornils1, Luigi Costamante1, B. Degrange, Hugh Dickinson3, A. Djannati-Ataï, L. O'c. Drury5, Guillaume Dubus, Kathrin Egberts1, Dimitrios Emmanoulopoulos6, P. Espigat, F. Feinstein, E. Ferrero6, A. Fiasson, G. Fontaine, Seb. Funk, Stefan Funk1, Y. A. Gallant, B. Giebels, J.F. Glicenstein, P. Goret, C. Hadjichristidis3, D. Hauser1, M. Hauser6, G. Heinzelmann7, Gilles Henri, German Hermann1, Jim Hinton1, Werner Hofmann1, M. Holleran4, Dieter Horns1, A. Jacholkowska, O. C. de Jager4, B. Khélifi, Nu. Komin, A. Konopelko, Karl Kosack1, I. J. Latham3, R. Le Gallou3, Anne Lemiere, M. Lemoine-Goumard, Thomas Lohse, Jean Michel Martin2, Olivier Martineau-Huynh, A. Marcowith, Conor Masterson1, T. J. L. McComb3, M. de Naurois, D. Nedbal1, S. J. Nolan3, A. Noutsos3, K. J. Orford1, J. L. Osborne1, M. Ouchrif, M. Panter1, G. Pelletier, S. Pita, G. Pühlhofer1, Michael Punch, B. C. Raubenheimer4, M. Raue1, S. M. Rayner3, A. Reimer8, Olaf Reimer8, J. Ripken7, L. Rob9, L. Rolland, Gavin Rowell1, V. Sahakian10, L. Saugé, S. Schlenker, Reinhard Schlickeiser8, U. Schwanke, Helene Sol2, D. Spangler3, Felix Spanier8, R. Steenkamp11, C. Stegmann, G. Superina, J.-P. Tavernet, Regis Terrier, C. G. Théoret, M. Tluczykont, C. van Eldik1, G. Vasileiadis, Christo Venter4, P. Vincent, Heinrich J. Völk1, S. J. Wagnern6, Martin Ward3 
TL;DR: In this paper, the Crab nebula was observed with the H.E.S. stereoscopic Cherenkov-telescope array between 2003 and 2005 for a total of 22.9 hours (after data quality selection).
Abstract: The Crab nebula was observed with the H.E.S.S. stereoscopic Cherenkov-telescope array between October 2003 and January 2005 for a total of 22.9 hours (after data quality selection). Observations were made with three operational telescopes in late 2003 and with the complete 4 telescope array in January - February 2004 and October 2004 - January 2005. The observations are discussed and used as an example to detail the flux and spectral analysis procedures of H.E.S.S., and to evaluate the systematic uncertainties in H.E.S.S. flux measurements. The flux and spectrum of gamma-rays from the source are calculated on run-by-run and monthly time-scales, and a correction is applied for long-term variations in the detector sensitivity. Comparisons of the measured flux and spectrum over the observation period, along with the results from a number of different analysis procedures are used to estimate systematic uncertainties in the measurements. The energy spectrum is found to follow a power law with an exponential cutoff, with photon index $\Gamma = 2.39 \pm 0.03\stat$ and cutoff energy $E_{c} = (14.3 \pm 2.1\stat) \textrm{TeV}$ between 440 GeV and 40 TeV. The observed integral flux above 1 TeV is $(2.26 \pm 0.08\stat) \times 10^{-11} cm^{-2} s^{-1}$. The estimated systematic error on the flux measurement is estimated to be 20%, while the estimated systematic error on the spectral slope is 0.1.

699 citations

Journal ArticleDOI
TL;DR: The ALICE experiment at the CERN Large Hadron Collider as mentioned in this paper continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams.
Abstract: ALICE is the heavy-ion experiment at the CERN Large Hadron Collider. The experiment continuously took data during the first physics campaign of the machine from fall 2009 until early 2013, using proton and lead-ion beams. In this paper we describe the running environment and the data handling procedures, and discuss the performance of the ALICE detectors and analysis methods for various physics observables.

691 citations


Authors

Showing all 1385 results

NameH-indexPapersCitations
Marc Besancon1431799106869
Robin Erbacher1381721100252
Wolfgang Adam135151296946
Manfred Jeitler132127889645
Albert M. Sirunyan132126390602
Ivan Mikulec131128388206
Loic Quertenmont12990576221
Armen Tumasyan128118979408
Manfred Krammer128103283314
Lorenzo Uplegger125108076050
Jochen Schieck124128577822
Vardan Khachatryan12370269413
Felix Aharonian12186955951
Jordan Nash11996172116
Claudia-Elisabeth Wulz11664763148
Network Information
Related Institutions (5)
Joint Institute for Nuclear Research
28.8K papers, 663.8K citations

91% related

Istituto Nazionale di Fisica Nucleare
22.6K papers, 565.5K citations

90% related

CERN
47.1K papers, 1.7M citations

89% related

Institute for Advanced Study
7.2K papers, 621.1K citations

88% related

Fermilab
14.6K papers, 760.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20234
202223
2021148
2020176
2019201
2018246