scispace - formally typeset
Search or ask a question

Showing papers in "Aaps Journal in 2012"


Journal ArticleDOI
Neil P. Desai1
TL;DR: Challenges likely to be encountered during the development and approval of nanoparticle-based therapeutics are summarized, and potential strategies for drug developers and regulatory agencies to accelerate the growth of this important field are discussed.
Abstract: In recent years, nanotechnology has been increasingly applied to the area of drug development. Nanoparticle-based therapeutics can confer the ability to overcome biological barriers, effectively deliver hydrophobic drugs and biologics, and preferentially target sites of disease. However, despite these potential advantages, only a relatively small number of nanoparticle-based medicines have been approved for clinical use, with numerous challenges and hurdles at different stages of development. The complexity of nanoparticles as multi-component three dimensional constructs requires careful design and engineering, detailed orthogonal analysis methods, and reproducible scale-up and manufacturing process to achieve a consistent product with the intended physicochemical characteristics, biological behaviors, and pharmacological profiles. The safety and efficacy of nanomedicines can be influenced by minor variations in multiple parameters and need to be carefully examined in preclinical and clinical studies, particularly in context of the biodistribution, targeting to intended sites, and potential immune toxicities. Overall, nanomedicines may present additional development and regulatory considerations compared with conventional medicines, and while there is generally a lack of regulatory standards in the examination of nanoparticle-based medicines as a unique category of therapeutic agents, efforts are being made in this direction. This review summarizes challenges likely to be encountered during the development and approval of nanoparticle-based therapeutics, and discusses potential strategies for drug developers and regulatory agencies to accelerate the growth of this important field.

618 citations


Journal ArticleDOI
TL;DR: The recent advances and applications in SBVS are reviewed with a special focus on docking-based virtual screening and the researchers’ practical efforts in real projects are emphasized by understanding the ligand-target binding interactions as a premise.
Abstract: Structure-based virtual screening (SBVS) has been widely applied in early-stage drug discovery. From a problem-centric perspective, we reviewed the recent advances and applications in SBVS with a special focus on docking-based virtual screening. We emphasized the researchers’ practical efforts in real projects by understanding the ligand-target binding interactions as a premise. We also highlighted the recent progress in developing target-biased scoring functions by optimizing current generic scoring functions toward certain target classes, as well as in developing novel ones by means of machine learning techniques.

471 citations


Journal ArticleDOI
TL;DR: This review highlights evolution of liposomes for both passive and active targeting and challenges in development of targeted liposomal therapeutics specifically antibody-targeted liposome loaded with anticancer drugs.
Abstract: Liposomes, phospholipid vesicles with a bilayered membrane structure, have been widely used as pharmaceutical carriers for drugs and genes, in particular for treatment of cancer. To enhance the efficacy of the liposomal drugs, drug-loaded liposomes are targeted to the tumors by means of passive (enhanced permeability and retention mediated) targeting, based on the longevity of liposomes in blood and its accumulation in pathological sites with compromised vasculature, and active targeting, based on the attachment of specific ligands to the liposomal surface to bind certain antigens on the target cells. Antibody-targeted liposomes loaded with anticancer drugs demonstrate high potential for clinical applications. This review highlights evolution of liposomes for both passive and active targeting and challenges in development of targeted liposomal therapeutics specifically antibody-targeted liposomes.

281 citations


Journal ArticleDOI
TL;DR: If ultimately successful, the products now in development should offer non-injection alternatives for several peptide or protein drugs currently only administered by injection, and may create opportunities to apply these enabling technologies more broadly to existing drugs with non-optimal delivery properties.
Abstract: Absorption enhancers are functional excipients included in formulations to improve the absorption of a pharmacologically active drug. The term absorption enhancer usually refers to an agent whose function is to increase absorption by enhancing membrane permeation, rather than increasing solubility, so such agents are sometimes more specifically termed permeation enhancers. Absorption enhancers have been investigated for at least two decades, particularly in efforts to develop non-injection formulations for peptides, proteins, and other pharmacologically active compounds that have poor membrane permeability. While at least one product utilizing an absorption enhancer for transdermal use has reached the market, quite a few more appear to be at the threshold of becoming products, and these include oral and transmucosal applications. This paper will review some of the most advanced absorption enhancers currently in development and the formulation technologies employed that have led to their success. In addition, a more basic review of the barriers to absorption and the mechanisms by which those barriers can be surmounted is presented. Factors influencing the success of absorption-enhancing formulations are discussed. If ultimately successful, the products now in development should offer non-injection alternatives for several peptide or protein drugs currently only administered by injection. The introduction of new absorption enhancers as accepted pharmaceutical excipients, and the development of formulation technologies that afford the greatest benefit/risk ratio for their use, may create opportunities to apply these enabling technologies more broadly to existing drugs with non-optimal delivery properties.

272 citations


Journal ArticleDOI
TL;DR: These recommendations are based on risk assessment and include the determination of ADA content (concentration/titer), affinity, immunoglobulin isotype/subtype, and neutralization capacity.
Abstract: The development of therapeutic proteins requires the understanding of the relationship between the dose, exposure, efficacy, and toxicity of these molecules. Several intrinsic and extrinsic factors contribute to the challenges for measuring therapeutic proteins in a precise and accurate manner. In addition, induction of an immune response to therapeutic protein results in additional complexities in the analysis of the pharmacokinetic profile, toxicity, safety, and efficacy of this class of molecules. Assessment of immunogenicity of therapeutic proteins is a required aspect of regulatory filings for a licensing application and for the safe and efficacious use of these compounds. A systematic strategy and well-defined criteria for measuring anti-drug antibodies (ADA) have been established, to a large extent, through coordinated efforts. These recommendations are based on risk assessment and include the determination of ADA content (concentration/titer), affinity, immunoglobulin isotype/subtype, and neutralization capacity. This manuscript reviews the requirements necessary for understanding the nature of an ADA response in order to discern the impact of immunogenicity on pharmacokinetics/pharmacodynamics and efficacy.

262 citations


Journal ArticleDOI
TL;DR: Determinants of absorption after SC administration are summarized including compound properties such as charge or molecular weight and scale-up of animal data to humans is discussed, including the current shortcomings of empirical scaling approaches and the lack of suitable mechanistic approaches.
Abstract: The subcutaneous (SC) route is of growing interest for the administration of biotherapeutics. Key products on the biotherapeutic market such as insulins, but also several immunoglobulins or Fc-fusion proteins, are administered SC. Despite the importance of the SC route, the available knowledge about the processes involved in the SC absorption of biotherapeutics is limited. This review summarizes available information on the physiology of the SC tissue and on the pharmacokinetic processes after SC administration including “first pass catabolism” at the administration site as well as transport in the extracellular matrix of the SC tissue, followed by absorption into the blood circulation or the lymphatic system. Both monoclonal antibodies and other biotherapeutics are discussed. Determinants of absorption after SC administration are summarized including compound properties such as charge or molecular weight. Scale-up of animal data to humans is discussed, including the current shortcomings of empirical scaling approaches and the lack of suitable mechanistic approaches.

255 citations


Journal ArticleDOI
TL;DR: It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods, and the weight of the evidence indicates that thesolubility–permeability interplay cannot be ignored when using solubilty-enabling formulations.
Abstract: While each of the two key parameters of oral drug absorption, the solubility and the permeability, has been comprehensively studied separately, the relationship and interplay between the two have been largely ignored. For instance, when formulating a low-solubility drug using various solubilization techniques: what are we doing to the apparent permeability when we increase the solubility? Permeability is equal to the drug’s diffusion coefficient through the membrane times the membrane/aqueous partition coefficient divided by the membrane thickness. The direct correlation between the intestinal permeability and the membrane/aqueous partitioning, which in turn is dependent on the drug’s apparent solubility in the GI milieu, suggests that the solubility and the permeability are closely associated, exhibiting a certain interplay between them, and the current view of treating the one irrespectively of the other may not be sufficient. In this paper, we describe the research that has been done thus far, and present new data, to shed light on this solubility–permeability interplay. It has been shown that decreased apparent permeability accompanies the solubility increase when using different solubilization methods. Overall, the weight of the evidence indicates that the solubility–permeability interplay cannot be ignored when using solubility-enabling formulations; looking solely at the solubility enhancement that the formulation enables may be misleading with regards to predicting the resulting absorption, and hence, the solubility–permeability interplay must be taken into account to strike the optimal solubility–permeability balance, in order to maximize the overall absorption.

205 citations


Journal ArticleDOI
TL;DR: This approach is of interest primarily because the authors continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies.
Abstract: Repurposing drugs requires finding novel therapeutic indications compared to the ones for which they were already approved. This is an increasingly utilized strategy for finding novel medicines, one that capitalizes on previous investments while derisking clinical activities. This approach is of interest primarily because we continue to face significant gaps in the drug–target interactions matrix and to accumulate safety and efficacy data during clinical studies. Collecting and making publicly available as much data as possible on the target profile of drugs offer opportunities for drug repurposing, but may limit the commercial applications by patent applications. Certain clinical applications may be more feasible for repurposing than others because of marked differences in side effect tolerance. Other factors that ought to be considered when assessing drug repurposing opportunities include relevance to the disease in question and the intellectual property landscape. These activities go far beyond the identification of new targets for old drugs.

200 citations


Journal ArticleDOI
TL;DR: It is proposed that GC growth is a solid-state transformation enabled by local mobility in glasses and that fast surface crystal growth is facilitated by surface molecular mobility.
Abstract: We review recent progress toward understanding and enhancing the stability of amorphous pharmaceutical solids against crystallization. As organic liquids are cooled to become glasses, fast modes of crystal growth can emerge. One such growth mode, the glass-to-crystal or GC mode, occurs in the bulk, and another exists at the free surface, both leading to crystal growth much faster than predicted by theories that assume diffusion defines the kinetic barrier of crystallization. These phenomena have received different explanations, and we propose that GC growth is a solid-state transformation enabled by local mobility in glasses and that fast surface crystal growth is facilitated by surface molecular mobility. In the second part, we review recent findings concerning the effect of polymer additives on crystallization in organic glasses. Low-concentration polymer additives can strongly inhibit crystal growth in the bulk of organic glasses, while having weaker effect on surface crystal growth. Ultra-thin polymer coatings can inhibit surface crystallization. Recent work has shown the importance of molecular weight for crystallization inhibitors of organic glasses, besides “direct intermolecular interactions” such as hydrogen bonding. Relative to polyvinylpyrrolidone, the VP dimer is far less effective in inhibiting crystal growth in amorphous nifedipine. Further work is suggested for better understanding of crystallization of amorphous organic solids and the prediction of their stability.

137 citations


Journal ArticleDOI
TL;DR: This review will address issues related to assessing the performance of supersaturatable systems including: (1) Diversified approaches for developing Supersaturatable formulations, (2) meaningful in vitro test methods to evaluate supersaturable formulations, and (3) in vivo PK study cases which have demonstrated direct relevance between the supersaturation state and the exposure observed in animal models and human subjects.
Abstract: With the increasing number of poorly water-soluble compounds in contemporary drug discovery pipelines, the concept of supersaturation as an effective formulation approach for enhancing bioavailability is gaining momentum. This is intended to design the formulation to yield significantly high intraluminal concentrations of the drug than the thermodynamic equilibrium solubility through achieving supersaturation and thus to enhance the intestinal absorption. The major challenges faced by scientists developing supersaturatable formulations include controlling the rate and degree of supersaturation with the application of polymeric precipitation inhibitor and maintenance of post-administration supersaturation. This review is intended to cover publications on this topic since April 2009. Scientific publications associated with characterization of supersaturatable systems and related preclinical and clinical pharmacokinetics (PK) studies are reviewed. Specifically, this review will address issues related to assessing the performance of supersaturatable systems including: (1) Diversified approaches for developing supersaturatable formulations, (2) meaningful in vitro test methods to evaluate supersaturatable formulations, and (3) in vivo PK study cases which have demonstrated direct relevance between the supersaturation state and the exposure observed in animal models and human subjects.

129 citations


Journal ArticleDOI
TL;DR: T-DM1, SAR3419, and IMGN901 were all found to facilitate efficient deliveries of active maytansinoid catabolites to the tumor tissue in mouse xenograft models and were effectively detoxified during hepatobiliary elimination in rodents.
Abstract: The concept of treating cancer with antibody-drug conjugates (ADCs) has gained momentum with the favorable activity and safety of trastuzumab emtansine (T-DM1), SAR3419, and lorvotuzumab mertansine (IMGN901). All three ADCs utilize maytansinoid cell-killing agents which target tubulin and suppress microtubule dynamics. Each ADC utilizes a different optimized chemical linker to attach the maytansinoid to the antibody. Characterizing the absorption, distribution, metabolism, and excretion (ADME) of these ADCs in preclinical animal models is important to understanding their efficacy and safety profiles. The ADME properties of these ADCs in rodents were inferred from studies with radio-labeled ADCs prepared with nonbinding antibodies since T-DM1, SAR3419, IMGN901 all lack cross-reactivity with rodent antigens. For studies exploring tumor localization and activation in tumor-bearing mice, tritium-labeled T-DM1, SAR3419, and IMGN901 were utilized. The chemical nature of the linker was found to have a significant impact on the ADME properties of these ADCs—particularly on the plasma pharmacokinetics and observed catabolites in tumor and liver tissues. Despite these differences, T-DM1, SAR3419, and IMGN901 were all found to facilitate efficient deliveries of active maytansinoid catabolites to the tumor tissue in mouse xenograft models. In addition, all three ADCs were effectively detoxified during hepatobiliary elimination in rodents.

Journal ArticleDOI
TL;DR: It is concluded that for acetaminophen, a model compound for passive transport into, within, and out of the brain, differences exist between the brain ECF and the CSF pharmacokinetics.
Abstract: One of the major challenges in the development of central nervous system (CNS)-targeted drugs is predicting CNS exposure in human from preclinical data. In this study, we present a methodology to investigate brain disposition in rats using a physiologically based modeling approach aiming at improving the prediction of human brain exposure. We specifically focused on quantifying regional diffusion and fluid flow processes within the brain. Acetaminophen was used as a test compound as it is not subjected to active transport processes. Microdialysis probes were implanted in striatum, for sampling brain extracellular fluid (ECF) concentrations, and in lateral ventricle (LV) and cisterna magna (CM), for sampling cerebrospinal fluid (CSF) concentrations. Serial blood samples were taken in parallel. These data, in addition to physiological parameters from literature, were used to develop a physiologically based model to describe the regional brain pharmacokinetics of acetaminophen. The concentration–time profiles of brain ECF, CSFLV, and CSFCM indicate a rapid equilibrium with plasma. However, brain ECF concentrations are on average fourfold higher than CSF concentrations, with average brain-to-plasma AUC0 − 240 ratios of 121%, 28%, and 35% for brain ECF, CSFLV, and CSFCM, respectively. It is concluded that for acetaminophen, a model compound for passive transport into, within, and out of the brain, differences exist between the brain ECF and the CSF pharmacokinetics. The physiologically based pharmacokinetic modeling approach is important, as it allowed the prediction of human brain ECF exposure on the basis of human CSF concentrations.

Journal ArticleDOI
TL;DR: This manuscript summarizes the key considerations for the generation, production, characterization, qualification, documentation, and management of critical reagents in LBAs, with recommendations for antibodies (monoclonal and polyclonal), engineered proteins, peptides, and their conjugates.
Abstract: Critical reagents are essential components of ligand binding assays (LBAs) and are utilized throughout the process of drug discovery, development, and post-marketing monitoring. Successful lifecycle management of LBA critical reagents minimizes assay performance problems caused by declining reagent activity and can mitigate the risk of delays during preclinical and clinical studies. Proactive reagent management assures adequate supply. It also assures that the quality of critical reagents is appropriate and consistent for the intended LBA use throughout all stages of the drug development process. This manuscript summarizes the key considerations for the generation, production, characterization, qualification, documentation, and management of critical reagents in LBAs, with recommendations for antibodies (monoclonal and polyclonal), engineered proteins, peptides, and their conjugates. Recommendations are given for each reagent type on basic and optional characterization profiles, expiration dates and storage temperatures, and investment in a knowledge database system. These recommendations represent a consensus among the authors and should be used to assist bioanalytical laboratories in the implementation of a best practices program for critical reagent life cycle management.

Journal ArticleDOI
TL;DR: This minireview examines how characteristics of the antibodies could be altered to change their PK profiles and observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance.
Abstract: Monoclonal antibodies are increasingly being developed to treat multiple disease areas, including those related to oncology, immunology, neurology, and ophthalmology. There are multiple factors, such as charge, size, neonatal Fc receptor (FcRn) binding affinity, target affinity and biology, immunoglobulin G (IgG) subclass, degree and type of glycosylation, injection route, and injection site, that could affect the pharmacokinetics (PK) of these large macromolecular therapeutics, which in turn could have ramifications on their efficacy and safety. This minireview examines how characteristics of the antibodies could be altered to change their PK profiles. For example, it was observed that a net charge modification of at least a 1-unit shift in isoelectric point altered antibody clearance. Antibodies with enhanced affinity for FcRn at pH 6.0 display longer serum half-lives and slower clearances than wild type. Antibody fragments have different clearance rates and tissue distribution profiles than full length antibodies. Fc glycosylation is perceived to have a minimal effect on PK while that of terminal high mannose remains unclear. More investigation is warranted to determine if injection route and/or site impacts PK. Nonetheless, a better understanding of the effects of all these variations may allow for the better design of antibody therapeutics.

Journal ArticleDOI
TL;DR: The TIM-1 system was able to show that AZD8055 exposure would increase in an approximately dose proportional manner and not be limited by the solubility or dissolution and also showed that the exposure produced by a solution and a tablet would be the same.
Abstract: In recent years mechanical systems have been developed that more closely mimic the full dynamic, physical and biochemical complexity of the GI Tract. The development of these complex systems raises the possibility that they could be used to support formulation development of poorly soluble compounds and importantly may be able to replace clinical BE studies in certain circumstances. The ability of the TNO Simulated Gastro-Intestinal Tract Model 1 (TIM-1) Dynamic Artificial Gastrointestinal System in the ‘lipid membrane’ configuration to support the development of Biopharmaceutics Classification System Class 2 compounds was investigated by assessing the performance of various AZD8055 drug forms and formulations in the TIM-1 system under standard fasting and achlorhydric physiological conditions. The performance data were compared with exposure data from the phase 1 clinical study. Analysis of the AZD8055 plasma concentrations after tablet administration supported the conclusions drawn from the TIM-1 experiments and confirmed that these complex systems can effectively support the product development of poorly soluble drugs. Particularly, the TIM-1 system was able to show that AZD8055 exposure would increase in an approximately dose proportional manner and not be limited by the solubility or dissolution. Additionally, the investigations also showed that the exposure produced by a solution and a tablet would be the same. Specific instances when the TIM-1 system may not be predictive of clinical product performance have also been identified.

Journal ArticleDOI
TL;DR: A new physiologically based pharmacokinetic model has been developed to approximate the pH and time-dependent endosomal trafficking of immunoglobulin G (IgG) and it is predicted that the new catenary PBPK model predicts much more moderate changes in half-life with altered FcRn binding.
Abstract: Efforts have been made to extend the biological half-life of monoclonal antibody drugs (mAbs) by increasing the affinity of mAb–neonatal Fc receptor (FcRn) binding; however, mixed results have been reported. One possible reason for a poor correlation between the equilibrium affinity of mAb–FcRn binding and mAb systemic pharmacokinetics is that the timecourse of endosomal transit is too brief to allow binding to reach equilibrium. In the present work, a new physiologically based pharmacokinetic (PBPK) model has been developed to approximate the pH and time-dependent endosomal trafficking of immunoglobulin G (IgG). In this model, a catenary sub-model was utilized to describe the endosomal transit of IgG and the time dependencies in IgG–FcRn association and dissociation. The model performs as well as a previously published PBPK model, with assumed equilibrium kinetics of mAb–FcRn binding, in capturing the disposition profile of murine mAb from wild-type and FcRn knockout mice (catenary vs. equilibrium model: r 2, 0.971 vs. 0.978; median prediction error, 3.38% vs. 3.79%). Compared to the PBPK model with equilibrium binding, the present catenary PBPK model predicts much more moderate changes in half-life with altered FcRn binding. For example, for a 10-fold increase in binding affinity, the catenary model predicts 70-fold increase as predicted by the equilibrium model. Predictions of the new catenary PBPK model are more consistent with experimental results in the published literature.

Journal ArticleDOI
TL;DR: A reference-scaled average bioequivalence (RSABE) approach, whereby the BE acceptance limits are scaled to the variability of the reference product, has been implemented successfully and supported four full approvals and one tentative approval of HV generic drug products.
Abstract: Highly variable (HV) drugs are defined as those for which within-subject variability (%CV) in bioequivalence (BE) measures is 30% or greater. Because of this high variability, studies designed to show whether generic HV drugs are bioequivalent to their corresponding HV reference drugs may need to enroll large numbers of subjects even when the products have no significant mean differences. To avoid unnecessary human testing, the US Food and Drug Administration’s Office of Generic Drugs developed a reference-scaled average bioequivalence (RSABE) approach, whereby the BE acceptance limits are scaled to the variability of the reference product. For an acceptable RSABE study, an HV generic drug product must meet the scaled BE limit and a point estimate constraint. The approach has been implemented successfully. To date, the RSABE approach has supported four full approvals and one tentative approval of HV generic drug products.

Journal ArticleDOI
TL;DR: Five common traps which could limit either the setting or use of IVIVC are investigated, including mean or individual values, correction of absolute bioavailability, lag time and time scaling, flip-flop model, and predictability corrections.
Abstract: In vitro–in vivo correlation (IVIVC) is a biopharmaceutical tool recommended to be used in development of formulation. When validated, it can speed up development of formulation, be used to fix dissolution limits and also as surrogate of in vivo study. However, as do all tools, it presents limitations and traps. The aim of the present paper is to investigate five common traps which could limit either the setting or use of IVIVC (1) using mean or individual values; (2) correction of absolute bioavailability; (3) correction of lag time and time scaling; (4) flip-flop model; and (5) predictability corrections.

Journal ArticleDOI
TL;DR: The aim of this article is to review the common approaches for FIH dose estimation with an emphasis on PK-guided estimation, and to serve as a practical protocol for PK- or pharmacokinetic/pharmacodynamic- guided estimation of the FIH doses.
Abstract: Quantitative estimations of first-in-human (FIH) doses are critical for phase I clinical trials in drug development. Human pharmacokinetic (PK) prediction methods have been developed to project the human clearance (CL) and bioavailability with reasonable accuracy, which facilitates estimation of a safe yet efficacious FIH dose. However, the FIH dose estimation is still very challenging and complex. The aim of this article is to review the common approaches for FIH dose estimation with an emphasis on PK-guided estimation. We discuss 5 methods for FIH dose estimation, 17 approaches for the prediction of human CL, 6 methods for the prediction of bioavailability, and 3 tools for the prediction of PK profiles. This review may serve as a practical protocol for PK- or pharmacokinetic/pharmacodynamic-guided estimation of the FIH dose.

Journal ArticleDOI
TL;DR: The physiological background of lipid digestion is followed by a thorough summary of the techniques that are currently used to characterise in vitro lipolysis in order to better understanding of how LBDDS promote drug delivery.
Abstract: Facing the increasing number of poorly water-soluble drugs, pharmaceutical scientists are required to break new grounds for the delivery of these pharmaceutically problematic drugs. Lipid-based drug delivery systems (LBDDS) have received increased interest as a novel drug delivery platform during the last decades and several successfully marketed products have shown the potential for LBDDS. However, there exists a discrepancy between the clear need for innovative delivery forms and their rational design. In the case of LBDDS, this can be attributed to the complexity of LBDDS after administration. Unlike conventional formulations, LBDDS are susceptible to digestion in the gastrointestinal tract, the interplay of delivery system, drug and physiology ultimately effecting drug disposition. In vitro lipolysis has become an important technique to mimic the enzymatic degradation. For the better understanding of how LBDDS promote drug delivery, in vitro lipolysis requires advanced characterisation methods. In this review, the physiological background of lipid digestion is followed by a thorough summary of the techniques that are currently used to characterise in vitro lipolysis. It would be desirable that the increasing knowledge about LBDDS will foster their rationale development thereby increasing their broader application.

Journal ArticleDOI
TL;DR: It is perceivable that new in silico toxicity models based on high-quality qHTS data will achieve unprecedented reliability and robustness, thus becoming a valuable tool for risk assessment and drug discovery.
Abstract: The limitations of traditional toxicity testing characterized by high-cost animal models with low-throughput readouts, inconsistent responses, ethical issues, and extrapolability to humans call for alternative strategies for chemical risk assessment. A new strategy using in vitro human cell-based assays has been designed to identify key toxicity pathways and molecular mechanisms leading to the prediction of an in vivo response. The emergence of quantitative high-throughput screening (qHTS) technology has proved to be an efficient way to decompose complex toxicological end points to specific pathways of targeted organs. In addition, qHTS has made a significant impact on computational toxicology in two aspects. First, the ease of mechanism of action identification brought about by in vitro assays has enhanced the simplicity and effectiveness of machine learning, and second, the high-throughput nature and high reproducibility of qHTS have greatly improved the data quality and increased the quantity of training datasets available for predictive model construction. In this review, the benefits of qHTS routinely used in the US Tox21 program will be highlighted. Quantitative structure–activity relationships models built on traditional in vivo data and new qHTS data will be compared and analyzed. In conjunction with the transition from the pilot phase to the production phase of the Tox21 program, more qHTS data will be made available that will enrich the data pool for predictive toxicology. It is perceivable that new in silico toxicity models based on high-quality qHTS data will achieve unprecedented reliability and robustness, thus becoming a valuable tool for risk assessment and drug discovery.

Journal ArticleDOI
TL;DR: The in vitro and CFD results together suggest that matching the resistance of test and reference DPI devices is not sufficient to attain comparable aerosolization performance, and the improved in vitro comparability of Mod 2 to the HandiHaler may be related to the greater degree of similarities of the flow rate of air through the pierced capsule and the maximum impact velocity of representative carrier particles in the Cyclohaler-based device.
Abstract: This study investigated the effect of modifying the design of the Cyclohaler on its aerosolization performance and comparability to the HandiHaler at multiple flow rates. The Cyclohaler and HandiHaler were designated as model test and reference unit-dose, capsule-based dry powder inhalers (DPIs), respectively. The flow field, pressure drop, and carrier particle trajectories within the Cyclohaler and HandiHaler were modeled via computational fluid dynamics (CFD). With the goal of achieving in vitro comparability to the HandiHaler, the CFD results were used to identify key device attributes and to design two modifications of the Cyclohaler (Mod 1 and Mod 2), which matched the specific resistance of the HandiHaler but exhibited different cyclonic flow conditions in the device. Aerosolization performance of the four DPI devices was evaluated by using the reference product's capsule and formulation (Spiriva capsule) and a multistage cascade impactor. The in vitro data showed that Mod 2 provided a closer match to the HandiHaler than the Cyclohaler and Mod 1 at 20, 39, and 55 l/min. The in vitro and CFD results together suggest that matching the resistance of test and reference DPI devices is not sufficient to attain comparable aerosolization performance, and the improved in vitro comparability of Mod 2 to the HandiHaler may be related to the greater degree of similarities of the flow rate of air through the pierced capsule (Qc) and the maximum impact velocity of representative carrier particles (Vn) in the Cyclohaler-based device. This investigation illustrates the importance of enhanced product understanding, in this case through the CFD modeling and in vitro characterization of aerosolization performance, to enable identification and modification of key design features of a test DPI device for achieving comparable aerosolization performance to the reference DPI device.

Journal ArticleDOI
TL;DR: Macitentan co-administered with Cs or rifampin was well tolerated and no marked differences in uptake rates of macitentan and ACT-132577 between the wild-type and OATP over-expressing cells over the concentration range tested were demonstrated.
Abstract: Macitentan is a dual endothelin receptor antagonist under phase 3 investigation in pulmonary arterial hypertension. We investigated the effect of cyclosporine (Cs) and rifampin on the pharmacokinetics of macitentan and its metabolites ACT-132577 and ACT-373898 in healthy male subjects. In addition, in vitro studies were performed to investigate interactions between macitentan and its active metabolite ACT-132577 with human organic anion-transporting polypeptides (OATPs). The clinical study (AC-055-111) was conducted as a two-part, one-sequence, crossover study. Ten subjects in each part received multiple-dose macitentan followed by multiple-dose co-administration of Cs (part A) or rifampin (part B). In the presence of Cs, steady-state area under the plasma concentration–time profiles during a dose interval (AUCτ) for macitentan and ACT-373898 increased 10% and 7%, respectively, and decreased 3% for ACT-132577. Steady-state AUCτ of macitentan and ACT-373898 in the presence of rifampin decreased 79% and 64%, respectively. For ACT-132577, no relevant difference in AUCτ between the two treatments was observed. Macitentan co-administered with Cs or rifampin was well tolerated. The complementary in vitro studies demonstrated no marked differences in uptake rates of macitentan and ACT-132577 between the wild-type and OATP over-expressing cells over the concentration range tested. Concomitant treatment with Cs did not have any clinically relevant effect on the exposure to macitentan or its metabolites, at steady-state. Concomitant treatment with rifampin reduced significantly the exposure to macitentan and its metabolite ACT-373898 at steady-state but did not affect the exposure to the active metabolite ACT-132577 to a clinically relevant extent.

Journal ArticleDOI
TL;DR: Recent findings about the neural substrates of nociception and pain in VS/UWS patients as well as recent behavioral assessment methods of nOCiception specifically designed for patients in altered states of consciousness are summarized and implications for pain treatment in these patients are discussed.
Abstract: The management and treatment of acute pain is very difficult in non-communicative patients with disorders of consciousness (i.e., vegetative state/unresponsive wakefulness syndrome (VS/UWS) and minimally conscious state), creating an ethical dilemma for caregivers and an emotional burden among both relatives and caregivers. In this review, we summarize recent findings about the neural substrates of nociception and pain in VS/UWS patients as well as recent behavioral assessment methods of nociception specifically designed for patients in altered states of consciousness. We will finally discuss implications for pain treatment in these patients.

Journal ArticleDOI
TL;DR: A tool is provided to help understand population covariate analysis and their potential implications for the clinic to help clinical oncologists with a special interest in clinical and mathematical pharmacology understand these models.
Abstract: When modeling pharmacokinetic (PK) data, identifying covariates is important in explaining interindividual variability, and thus increasing the predictive value of the model. Nonlinear mixed-effects modeling with stepwise covariate modeling is frequently used to build structural covariate models, and the most commonly used software—NONMEM—provides estimations for the fixed-effect parameters (e.g., drug clearance), interindividual and residual unidentified random effects. The aim of covariate modeling is not only to find covariates that significantly influence the population PK parameters, but also to provide dosing recommendations for a certain drug under different conditions, e.g., organ dysfunction, combination chemotherapy. A true covariate is usually seen as one that carries unique information on a structural model parameter. Covariate models have improved our understanding of the pharmacology of many anticancer drugs, including busulfan or melphalan that are part of high-dose pretransplant treatments, the antifolate methotrexate whose elimination is strongly dependent on GFR and comedication, the taxanes and tyrosine kinase inhibitors, the latter being subject of cytochrome p450 3A4 (CYP3A4) associated metabolism. The purpose of this review article is to provide a tool to help understand population covariate analysis and their potential implications for the clinic. Accordingly, several population covariate models are listed, and their clinical relevance is discussed. The target audience of this article are clinical oncologists with a special interest in clinical and mathematical pharmacology.

Journal ArticleDOI
TL;DR: This review summarizes the current experience in the biopharmaceutic field with the use of nanosuspensions as oral delivery formulations and highlights both successes as well as limitations in their application as either toxicology or clinical formulations.
Abstract: Nanosuspensions, formulations based on the reduction of the active pharmaceutical ingredient (API) particle size in the sub-micron range and most typically around 100–200 nm, represent a valuable option for formulators to facilitate oral absorption of Biopharmaceutics Classification System class II and IV compounds. Their ability to increase the API dissolution rate and subsequent absorption and thus oral bioavailability has been demonstrated in preclinical and clinical settings. This review summarizes the current experience in the biopharmaceutic field with the use of nanosuspensions as oral delivery formulations. The principles behind nanosuspensions as well as the in vitro and in silico evaluation are discussed, while examples are presented highlighting both successes as well as limitations in their application as either toxicology or clinical formulations.

Journal ArticleDOI
TL;DR: The results confirmed the findings of previous studies and support FDA recommendation to perform pre-genotyping in patients before the choice of therapy is determined in breast cancer patients.
Abstract: CYP2D6 plays a major role in the metabolism of tamoxifen, and polymorphism of P-glycoprotein has been associated with resistance of many drug therapies. This study investigates the clinical impact of genetic variants of CYP2D6 and ABCB1 in breast cancer patients treated with tamoxifen. Blood samples from 95 breast cancer patients treated with tamoxifen were collected and genotyped for CYP2D6 and ABCB1 variants using allele-specific PCR method. Recurrence risks were calculated using Kaplan–Meier analysis and compared using the log-rank test. Patients carrying CYP2D6*10/*10 and heterozygous null allele (IM) showed higher risks of developing recurrence and metastasis (OR 13.14; 95% CI 1.57–109.94; P = 0.004) than patients with CYP2D6*1/*1 and *1/*10 genotypes. Patients with homozygous CC genotypes of ABCB1 C3435T showed a shorter time to recurrence. Patients who were CYP2D6 IM and homozygous CC genotype of C3435T have statistically significant higher risks of recurrence (P = 0.002). Similarly, median time to recurrence in these patients was only 12 months (95% CI = 0.79–23.2) compared to those without this combination which was 48 months (95% CI = 14.7–81.2). Patients with CYP2D6 IM and homozygous CC genotype of ABCB1 C3435T have shorter times to recurrence. The results confirmed the findings of previous studies and support FDA recommendation to perform pre-genotyping in patients before the choice of therapy is determined in breast cancer patients.

Journal ArticleDOI
TL;DR: This work investigates the effects of selectively targeting a single VEGF isoform, as compared with inhibiting all isoforms, and uses a molecular-detailed whole-body compartment model of V EGF transport and kinetics in the presence of breast tumor to provide a basis for clinical investigation of isoform-specific anti-VEGF agents.
Abstract: Vascular endothelial growth factor (VEGF) is a key mediator of angiogenesis, whose effect on cancer growth and development is well characterized. Alternative splicing of VEGF leads to several different isoforms, which are differentially expressed in various tumor types and have distinct functions in tumor blood vessel formation. Many cancer therapies aim to inhibit angiogenesis by targeting VEGF and preventing intracellular signaling leading to tumor vascularization; however, the effects of targeting specific VEGF isoforms have received little attention in the clinical setting. In this work, we investigate the effects of selectively targeting a single VEGF isoform, as compared with inhibiting all isoforms. We utilize a molecular-detailed whole-body compartment model of VEGF transport and kinetics in the presence of breast tumor. The model includes two major VEGF isoforms, VEGF121 and VEGF165, receptors VEGFR1 and VEGFR2, and co-receptors Neuropilin-1 and Neuropilin-2. We utilize the model to predict the concentrations of free VEGF, the number of VEGF/VEGFR2 complexes (considered to be pro-angiogenic), and the receptor occupancy profiles following inhibition of VEGF using isoform-specific anti-VEGF agents. We predict that targeting VEGF121 leads to a 54% and 84% reduction in free VEGF in tumors that secrete both VEGF isoforms or tumors that overexpress VEGF121, respectively. Additionally, 21% of the VEGFR2 molecules in the blood are ligated following inhibition of VEGF121, compared with 88% when both isoforms are targeted. Targeting VEGF121 reduces tumor free VEGF and is an effective treatment strategy. Our results provide a basis for clinical investigation of isoform-specific anti-VEGF agents.

Journal ArticleDOI
TL;DR: Overall, the review outlines the available methods for pharmacokinetic measurements of antibodies and physiological measurements of the compartments that they occupy, while emphasizing that such approaches may not fully capture the complexities of dynamic, heterogeneous tumors and other tissues.
Abstract: Monoclonal antibodies have provided many validated and potential new therapeutic candidates for various diseases encompassing the realms of neurology, ophthalmology, immunology, and especially oncology. The mechanism of action for these biological molecules typically involves specific binding to a soluble ligand or cell surface protein in order to block or alter a molecular pathway, induce a desired cellular response, or deplete a target cell. Many antigens reside within the interstitial space, the fluid-filled compartment that lies between the outer endothelial vessel wall and the plasma membranes of cells. This mini-review examines the concepts relevant to the kinetics and behavior of antibodies within the interstitium with a special emphasis on radiometric measurement of quantitative pharmacology. Molecular probes are discussed to outline chemical techniques, selection criteria, data interpretation, and relevance to the study of antibody pharmacokinetics. The importance of studying the tissue uptake of antibodies at a compartmental level is highlighted, including a brief overview of receptor occupancy and its interpretation in radiotracer studies. Experimental methods for measuring the spatial composition of tissues are examined in terms of relative vascular, interstitial, and cellular volumes using solid tumors as a representative example. Experimental methods and physiologically based pharmacokinetic modeling are introduced as distinct approaches to distinguish between free and bound fractions of interstitial antibody. Overall, the review outlines the available methods for pharmacokinetic measurements of antibodies and physiological measurements of the compartments that they occupy, while emphasizing that such approaches may not fully capture the complexities of dynamic, heterogeneous tumors and other tissues.

Journal ArticleDOI
TL;DR: Current knowledge on regulatory pathways for ABC transporters in kidney proximal tubules is discussed, with a main focus on P-glycoprotein, multidrug resistance proteins 2 and 4, and breast cancer resistance protein.
Abstract: The ATP-binding cassette transport proteins (ABC transporters) represent important determinants of drug excretion Protective or excretory tissues where these transporters mediate substrate efflux include the kidney proximal tubule Regulation of the transport proteins in this tissue requires elaborate signaling pathways, including genetic, epigenetic, nuclear receptor mediated, posttranscriptional gene regulation involving microRNAs, and non-genomic (kinases) pathways triggered by hormones and/or growth factors This review discusses current knowledge on regulatory pathways for ABC transporters in kidney proximal tubules, with a main focus on P-glycoprotein, multidrug resistance proteins 2 and 4, and breast cancer resistance protein Insight in these processes is of importance because variations in transporter activity due to certain (disease) conditions could lead to significant changes in drug efficacy or toxicity