scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Insect Biochemistry and Physiology in 2013"


Journal ArticleDOI
TL;DR: It is suggested that in various experimental settings, while conducting the "PQ resistance stress test" incorporation of selected biochemical end points is likely to enhance the quality of the data.
Abstract: Paraquat (PQ; 1, 1'-dimethyl-4-4'-bipyridinium), an herbicide and model neurotoxicant, is identified to be one of the prime risk factors in Parkinson's disease (PD). In the Drosophila system, PQ is commonly used to measure acquired resistance against oxidative stress (PQ resistance test). Despite this, under acute PQ exposure, data on the oxidative stress response and associated impact on mitochondria among flies is limited. Accordingly, in this study, we measured markers of oxidative stress and mitochondrial dysfunctions among adult male flies (8-10 days old) exposed to varying concentrations of PQ (10, 20, and 40 mM in 5% sucrose solution) employing a conventional filter disc method for 24 h. PQ exposure resulted in significant elevation in the levels of oxidative stress biomarkers (malondialdehyde: 43% increase: hydroperoxide: 32-39% increase), with concomitant enhancement in reduced glutathione and total thiol levels in cytosol. Higher activity of antioxidant enzymes were also evident along with increased free iron levels. Furthermore, PQ exposure caused a concentration-dependent increase in mitochondrial superoxide generation and activity of manganese-superoxide dismutase (Mn-SOD). The activity levels of complex I-III, complex II-III, and Mg+2 adinosine triphosphatase (ATPase) were also decreased significantly. A robust diminution in the activity of succinate dehydrogenase and moderate decline in the citrate synthase activity suggested a specific effect on citric acid cycle enzymes. Collectively, these data suggest that acute PQ exposure causes significant oxidative stress and mitochondrial dysfunction among flies in vivo. It is suggested that in various experimental settings, while conducting the "PQ resistance stress test" incorporation of selected biochemical end points is likely to enhance the quality of the data.

97 citations


Journal ArticleDOI
TL;DR: This study suggests that X. nematophila suppresses AMP production controlled by Toll and Imd pathways by inhibiting eicosanoid biosynthesis in S. exigua.
Abstract: Immune-associated genes of the beet armyworm, Spodoptera exigua, were predicted from 454 pyrosequencing transcripts of hemocytes collected from fifth instar larvae challenged with bacteria. Out of 22,551 contigs and singletons, 36% of the transcripts had at least one significant hit (E-value cutoff of 1e-20) and used to predict immune-associated genes implicated in pattern recognition, prophenoloxidase activation, intracellular signaling, and antimicrobial peptides (AMPs). Immune signaling and AMP genes were further confirmed in their expression patterns in response to different types of microbial challenge. To discriminate the AMP expression signaling between Toll and Imd pathways, RNA interference was applied to specifically knockdown each signal pathway; the separate silencing treatments resulted in differential suppression of AMP genes. An entomopathogenic bacterium, Xenorhabdus nematophila, suppressed expression of most AMP genes controlled by Toll and Imd pathways, while challenge with heat-killed X. nematophila induced expression of all AMPs in experimental larvae. Benzylideneacetone (BZA), a metabolite of X. nematophila, suppressed the AMP gene inductions when it was co-injected with the heat-killed X. nematophila. However, arachidonic acid, a catalytic product of PLA2 , significantly reversed the inhibitory effect of BZA on the AMP gene expression. This study suggests that X. nematophila suppresses AMP production controlled by Toll and Imd pathways by inhibiting eicosanoid biosynthesis in S. exigua.

62 citations


Journal ArticleDOI
TL;DR: This work presents for the first time a study on the SNMPs of C. medinalis, one of the serious rice insect pests in Asia, and indicates that the two genes are all subject to purifying selection and evolved to be functional genes.
Abstract: Sensory neuron membrane proteins (SNMPs), which are located on the dendritic membrane of olfactory neurons, were considered as important components involved in pheromone reception in insects. In Drosophila melanogaster, mutants without SNMP are unable to evoke neuronal activities in the presence of pheromone cis-vaccenyl acetate (cVA). So deeply understanding the SNMPs functions may help to develop pheromone-mediated insect pest management tactics. The present study reports the identification and characterization of CmedSNMP1 and CmedSNMP2, two candidate SNMPs in the rice leaffolder, Cnaphalocrocis medinalis, one of the serious rice insect pests in Asia. The comparison of amino acid sequences shows that CmedSNMP1 and CmedSNMP2 are very similar to the previously reported SNMPs isolated from moths such as Ostrinia nubilalis and O. furnacalis, respectively, but the two CmedSNMPs share low identity with each other. The distribution patterns of two CmedSNMPs in different tissues of adult moths were examined using RT-PCR and quantitative real-time PCR. Although the two genes are expressed not only in antennae but also in nonolfactory tissues such as wings, legs, and body; the relative transcription level shows both CmedSNMP1 and CmedSNMP2 are highly enriched in antennae. The dN/dS ratios of the two CmedSNMPs indicate that the two genes are all subject to purifying selection and evolved to be functional genes. This work presents for the first time a study on the SNMPs of C. medinalis, which may help in providing guidance to future functional research of moth SNMPs.

36 citations


Journal ArticleDOI
TL;DR: Both the deposited melanin granule in the cuticle and the abundant urate granules in the epidermis cells constitute effective barriers for the silkworm to resist UVA-induced damage.
Abstract: The phenomenon that epidermal cells under the white stripes rather than black stripes contain many uric acid granules was found in larvae of several Lepidopteran species However, the biological mechanism of this phenomenon is still unknown In the present study, we take advantage of several silkworm (Bombyx mori) body color mutant strains to investigate the deposition patterns and biological mechanism of urate and melanin in the integuments of these mutant larvae By imaging with transmission electron microscope, we found that there were some melanin granules in the larval cuticle in black body color mutant plain Black (p(B) ), but not in background strain plain (p) with white larval body color In contrast, the larval epidermal cell of background strain had much more urate granules than that of black one Furthermore, the uric acid content under the black stripes was significantly lower than that under the white stripes in a single individual of mottled stripe (p(S) ) with black and white stripes in each segment Ultraviolet A (UVA) exposure experiments showed that the distinct oily (od) mutant individuals with translucent larval integument were more sensitive to the UVA damage than black body color mutant and background strain without any pigmentation in the larval cuticle This is likely due to the absence of melanin granules and few urate granules in the integument of od mutant Thus, both the deposited melanin granules in the cuticle and the abundant urate granules in the epidermis cells constitute effective barriers for the silkworm to resist UVA-induced damage

35 citations


Journal ArticleDOI
TL;DR: It is inferred that α-solanine influences life history parameters and antioxidative enzyme activities in the midgut and fat body of G. mellonella.
Abstract: Plant allelochemicals are nonnutritional chemicals that interfere with the biology of herbivores. We posed the hypothesis that ingestion of a glycoalkaloid allelochemical, α-solanine, impairs biological parameters of greater wax moths Galleria mellonella. To test this idea, we reared wax moths on artificial diets with 0.015, 0.15, or 1.5 mg/100 g diet of α-solanine. Addition of α-solanine to the diet affected survival of seventh-instar larvae, pupae, and adults; and female fecundity and fertility. The diet containing the highest α-solanine concentration led to decreased survivorship, fecundity, and fertility. The diets supplemented with α-solanine led to increased malondialdehyde and protein carbonyl contents in midgut and fat body and the effect was dose-dependent. Dietary α-solanine led to increased midgut glutathione S-transferase activity and to decreased fat body glutathione S-transferase activitiy. We infer from these findings that α-solanine influences life history parameters and antioxidative enzyme activities in the midgut and fat body of G. mellonella.

30 citations


Journal ArticleDOI
TL;DR: It is shown that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine-aminopeptidases, and carboxypeptidase A activities, which resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected.
Abstract: The bioinsecticide Bacillus thuringiensis var. israelensis (Bti) is increasingly used worldwide for mosquito control. Although no established resistance to Bti has been described in the field so far, a resistant Aedes aegypti strain (LiTOX strain) was selected in the laboratory using field-collected leaf litter containing Bti toxins. This selected strain exhibits a moderate resistance level to Bti, but a high resistance level to individual Cry toxins. As Bti contains four different toxins, generalist resistance mechanisms affecting mosquito tolerance to different toxins were expected in the resistant strain. In the present work, we show that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine-aminopeptidases, and carboxypeptidase A activities. These elevated proteolytic activities resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected. These results suggest that changes in proteolytic activities may contribute to Bti resistance in mosquitoes together with other mechanisms.

29 citations


Journal ArticleDOI
TL;DR: The hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF3, and the findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.
Abstract: Termites and their gut microbial symbionts efficiently degrade lignocellulose into fermentable monosaccharides. This study examined three glycosyl hydrolase family 7 (GHF7) cellulases from protist symbionts of the termite Reticulitermes flavipes. We tested the hypotheses that three GHF7 cellulases (GHF7-3, GHF7-5, and GHF7-6) can function synergistically with three host digestive enzymes and a fungal cellulase preparation. Full-length cDNA sequences of the three GHF7s were assembled and their protist origins confirmed through a combination of quantitative PCR and cellobiohydrolase (CBH) activity assays. Recombinant versions of the three GHF7s were generated using a baculovirus-insect expression system and their activity toward several model substrates compared with and without metallic cofactors. GHF7-3 was the most active of the three cellulases; it exhibited a combination of CBH, endoglucanase (EGase), and β-glucosidase activities that were optimal around pH 7 and 30°C, and enhanced by calcium chloride and zinc sulfate. Lignocellulose saccharification assays were then done using various combinations of the three GHF7s along with a host EGase (Cell-1), beta-glucosidase (β-glu), and laccase (LacA). GHF7-3 was the only GHF7 to enhance glucose release by Cell-1 and β-glu. Finally, GHF7-3, Cell-1, and β-glu were individually tested with a commercial fungal cellulase preparation in lignocellulose saccharification assays, but only β-glu appreciably enhanced glucose release. Our hypothesis that protist GHF7 cellulases are capable of synergistic interactions with host termite digestive enzymes is supported only in the case of GHF7-3. These findings suggest that not all protist cellulases will enhance saccharification by cocktails of other termite or fungal lignocellulases.

29 citations


Journal ArticleDOI
TL;DR: Sequence analysis reveals that Atg8 proteins are highly conserved in lepidopteran species, and the mutant GFP-Atg8(G116A) has lost the function in punctual formation, suggesting that G116 is important for autophagy.
Abstract: Yeast Atg8 and mammalian microtubule-associated protein light chain 3 (LC3) are landmark proteins essential for autophagy. Here the lepidopteran Atg8, a homolog of LC3, is characterized. Sequence analysis reveals that Atg8 proteins are highly conserved in lepidopteran species. The abundance of endogeous Atg8 and the ratios of Atg8 conjugation to phosphatidylethanolamine (Atg8-PE)/Atg8 are different among several lepidopteran cell lines and different tissues of Helicoverpa armigera larvae. Both the density of fluorescent pre-autophagosomal structures with GFP-Ha Atg8 and the abundance of Atg6 are positively correlated with levels of Atg8-PE in different cell lines. The mutant GFP-Atg8(G116A) has lost the function in punctual formation, suggesting that G116 is important for autophagy. Exogenous factors have significant influences on the conversion of Atg8 in lepidopteran cells. Bacillus thuringiensis enhances the degradation of Atg8 in Spodoptera litura Sl-HP cells. Atg8-PE degrades gradually with extension of amino acid starvation, and bafilomycin A1 can block the decrease through the inhibition of autophagosome fusion with lysosome. Interestingly, high pH is more effective than amino acid starvation in Bombyx mori Bme cells to induce the conversion of BmAtg8 to BmAgt8-PE. Change of the quality of fetal bovine serum in the culture medium results in alteration of the ratio of Atg8-PE/Atg8 in some lepidopteran cell lines.

24 citations


Journal ArticleDOI
TL;DR: Bioinformatic analysis shows that Rhipilin-2 belongs to the Kunitz-type family of inhibitors, containing one Kunitz domain with homology to the tissue factor pathway inhibitor.
Abstract: A new Kunitz-type serine protease inhibitor, Rhipilin-2, was identified in the tick Rhipicephalus hemaphysaloides. The cDNA sequence of Rhipilin-2 is 693 bp, and it encodes a deduced 195 amino acid protein with a size of 22 kDa. Bioinformatic analysis shows that Rhipilin-2 belongs to the Kunitz-type family of inhibitors, containing one Kunitz domain with homology to the tissue factor pathway inhibitor. Using Real time polymerase chain reaction (Real time-PCR), Rhipilin-2 mRNA transcripts were detected in tick salivary glands and midgut. Blood feeding induced transcript expression. The recombinant protein was expressed in insect Sf9 cells and confirmed by immunofluorescence test and Western blot analysis with an anti-His antibody. The purified recombinant Rhipilin-2 inhibited serine protease trypsin and elastase, but not thrombin. The anticoagulant activity of Rhipilin-2 was shown by delaying normal clotting of rabbit plasma in the activated partial thromboplastin time tests. These results indicate that Rhipilin-2 is a novel Kunitz-type serine protease inhibitor involved in tick blood feeding.

23 citations


Journal ArticleDOI
TL;DR: In this paper, a full-length gene transcript encoding the O. nigriventris insulin receptor (OnInR) was sequenced and the predicted OnInR protein is similar in overall amino acid identity to other insulin receptors (InRs) and is most closely related phylogenetically to insect InRs.
Abstract: The insulin signaling pathway is the primary signaling pathway coupling growth with nutritional condition in all animals. Sensitivity to circulating levels of insulin has been shown to regulate the growth of specific traits in a dose-dependent manner in response to environmental conditions in a diversity of insect species. Alternative phenotypes in insects manifest in a variety of morphologies such as the sexually dimorphic and male dimorphic horned beetles. Large males of the sexually dimorphic dung beetle Onthophagus nigriventris develop a thoracic horn up to twice the length of the body whereas small males and females never develop this horn. The regulation of this dimorphism is known to be nutrition dependent for males. We focused on the insulin signaling pathway as a potential regulator of this dimorphism. We sequenced a full-length gene transcript encoding the O. nigriventris insulin receptor (OnInR), which is the receptor for circulating insulin and insulin-like peptides in animals. We show that the predicted OnInR protein is similar in overall amino acid identity to other insulin receptors (InRs) and is most closely related phylogenetically to insect InRs. Expression of the OnInR transcript was found during development of imaginal tissues in both males and females. However, expression of OnInR in the region where a horn would grow of small males and female was significantly higher than in the horn tissues of large males at the end of growth. This variation in OnInR expression between sexes and morphs indicates a role for the InR in polymorphic horn development.

20 citations


Journal ArticleDOI
TL;DR: In this midge the HSP70 protein family confers resistance against cold, being detected under natural conditions in control larvae collected in all seasons, but also against warm under experimental heat shocks, which give new insights into possible responses to climate changes in freshwater insects within the context of global warming.
Abstract: Laboratory experiments on the cold stenothermal midge Diamesa cinerella (Diptera, Chironomidae) were performed to study the relationship between increasing temperature and heat shock proteins (HSP70) expression at translational level (Western blotting). Thermotolerance of IV instar larvae collected in nature at 1.5–4.3°C during seasons was analyzed through short-term (1 h at ten different temperatures from 26°C to 35°C) and long-term (1–14 h at 26°C and 1–4 h at 32°C) heat shocks. A high thermotolerance was detected (LT50 = 30.9–32.8°C and LT100 = 34.0–37.8°C). However, survival decreased consistently with increasing exposure time, especially at higher temperature (LTime50 = 7.64 h at 26°C and LTime50 = 1.73 h at 32°C). The relationship between such heat resistance and HSP70 expression appeared evident because a relationship between HSP70 level and larval survival rate was generally found. A heat shock response (HSR) was consistent only in the summer larvae. The absence of HSR in the other populations coupled with even higher amounts of HSP70 than in summer, led us to hypothesize that other macromolecules and other adaptive mechanisms, apart from biochemical ones, are involved in the response of D. cinerella larvae to high temperature. Altogether these results stressed how in this midge the HSP70 protein family confers resistance against cold, being detected under natural conditions in control larvae collected in all seasons, but also against warm under experimental heat shocks. These results give new insights into possible responses to climate changes in freshwater insects within the context of global warming.

Journal ArticleDOI
TL;DR: Results suggested that the hb gene in parthenogenetic and viviparous Acyrthosiphon pisum was involved in abdominal identity suppression and germband growth as its homologue does in sexual insects.
Abstract: Aphid, a short germband insect, displays an embryogenesis different from that of long germband insect species. Furthermore, the development of its parthenogenetic and viviparous embryo is different from that of the embryo resulting from sexual reproduction. To better understand the genetic regulation of this type of embryogenesis, the functions of hunchback in asexual Acyrthosiphon pisum were investigated by parental RNAi. Microinjection of Aphb double-stranded RNA yielded several defective phenotypes. Quantitative real-time PCR analysis revealed that these defects resulted from reduction of Aphb mRNA level in injected aphids. All these results suggested that the hb gene in parthenogenetic and viviparous Acyrthosiphon pisum was involved in abdominal identity suppression and germband growth as its homologue does in sexual insects.

Journal ArticleDOI
TL;DR: The results suggest that NlDcr1 was crucial for the regulation of oogenesis in telotrophic ovary in Nilaparvata lugens Dcr1.
Abstract: As a member of the RNase III nucleases family, Dicer1 (Dcr1) protein plays an essential role in the production of microRNAs (miRNAs) and oocyte development. Here, the full-length cDNA of Nilaparvata lugens Dcr1 (NlDcr1) was firstly cloned and analyzed, and then the function of NlDcr1 gene was investigated by RNAi. The open reading frame of NlDcr1 cDNA was 6,720 bp in length (GenBank Accession no. JX644040), which encoded for a protein of 2,239 amino acids. The NlDcr1 transcripts were present in all developmental stages and tissues investigated. The lowest levels of NlDcr1 expression were found in the first and second instar stage, while the highest in 7- and 9 -day-old female adults. The expression levels were relatively higher in fat body, ovary, and midgut. After injecting 100 ng dsRNA of NlDcr1 into female adult, mRNA level of NlDcr1 gene was depleted significantly, and 10 kinds of tested miRNAs levels were downregulated in both whole body and ovary. The oocytes of females treated with dsNlDcr1 were smaller and badly malformed, among which the follicular cell did not develop normally, with unclear boundary between cells. These results suggest that NlDcr1 was crucial for the regulation of oogenesis in telotrophic ovary.

Journal ArticleDOI
TL;DR: Refeeding experiments suggest that the release of amylase in response to a nutrient in the lumen (glucose) is not due to simple stimulation of exocytosis, but rather a stimulation of synthesis.
Abstract: The secretion of amylase and cellulase in Gryllus bimaculatus is determined by increased food intake, whereby shortly after molting food consumption increases. About half of the standing amylase concentration (activity) in the endothelial cells can be secreted within 30 min. The peak of amylase and cellulase secretion that occurs in the photophase is related to the feeding peak in the previous scotophase. The secretion of chitinase on the other hand is primarily controlled by the molting cycle. Only amylase secretion was affected by calcium in the incubation medium, suggesting an apocrine release mechanism. Refeeding experiments (after 5 days without food) suggest that the release of amylase in response to a nutrient in the lumen (glucose) is not due to simple stimulation of exocytosis, but rather a stimulation of synthesis.

Journal ArticleDOI
TL;DR: Trypsin and chymotrypsin activities were decreased in parasitized larvae as compared to untreated larvae, with the effect being more pronounced over time, suggesting parasitization induced downregulation of serine proteinase gene transcripts.
Abstract: Serine proteinases, which include trypsins and chymotrypsins, play numerous roles in lepidopteran larvae, such as digestion, zymogen activation, and immune defense. Studies of lepidopteran serine proteinases could increase understanding of their feeding preference (polyphagous and monophagous) and facilitate identification of protease inhibitors, which can be engineered for pest management. In this paper, four full-length cDNAs encoding one chymotrypsin and three trypsins were cloned from larval midguts of the diamondback moth, Plutella xylostella. Real-time quantitative polymerase chain reaction (PCR) analysis showed all four serine protease genes were downregulated after P. xylostella was parasitized by the parasitoid wasp Cotesia vestalis. Trypsin and chymotrypsin enzymatic activities within the midgut of nonparasitized and C. vestalis-parasitized P. xylostella larvae were examined using N-a-benzoyl-arg p-nitroanilide and N-succinyl-ala-ala-pro-phe p-nitroanilide as substrates. Trypsin and chymotrypsin activities were decreased in parasitized larvae as compared to untreated larvae, with the effect being more pronounced over time. Chymotrypsin activity in particular exhibited a significant decrease in activity. The correlation of decreased enzymatic activity and transcript abundance suggests parasitization induced downregulation of serine proteinase gene transcripts.

Journal ArticleDOI
TL;DR: Differences in DNA synthesis suggest a compartmentalization of the immune response, probably mediated by different signaling pathways, in in vivo experiments, compared to cultured samples.
Abstract: The induction of DNA synthesis in various tissues of Anopheles albimanus, in response to challenge with Saccharomyces cerevisiae, Micrococcus luteus, and Serratia marcescens, was analyzed by 5-bromo-2-deoxy-uridine (BrdU) incorporation. Microorganism-inoculated mosquitoes were fed with a sucrose solution containing BrdU and maintained alive for 5 days. Alternatively, abdominal carcasses of microorganisms-inoculated mosquitoes were cultivated in Roswell Park Memorial Institute (RPMI) medium supplemented with BrdU for 5 days. Control groups were inoculated with RPMI alone. In both experiments, DNA synthesis, evidenced by epifluorescence with an anti-BrdU fluorescein-labeled antibody, occurred in fat body, epithelial cells of pleural membranes, dorsal vessel, and the oviducts. Relative quantification of DNA synthesis, evaluated by ELISA using an anti-BrdU peroxidase-labeled antibody, was higher in abdomen tissues of microorganisms-inoculated mosquitoes than controls in in vitro and in vivo experiments. The intensity of DNA synthesis varied among the different microorganism challenges, but was higher in in vivo experiments, compared to cultured samples. These differences in DNA synthesis suggest a compartmentalization of the immune response, probably mediated by different signaling pathways.

Journal ArticleDOI
Kun Zhang1, Jinzhi Niu1, Tian-Bo Ding1, Wei Dou1, Jin-Jun Wang1 
TL;DR: The results suggest that PCE1 and PCE2 may have distinct roles in different developmental stages and participate in the detoxification of acaricides.
Abstract: The citrus red mite, Panonychus citri, is known for its ability to rapidly evolve resistance to insecticides/acaricides and to adapt to hosts that produce toxins. To get better insight into the detoxification mechanism of P. citri, two carboxylesterase (CarE) genes, PCE1 and PCE2, were isolated and characterized. PCE1 and PCE2 contained open reading frames of 1,653 and 1,392 nucleotides, encoding proteins of 550 and 463 amino acid residues, respectively. Phylogenetic analyses showed that PCE1 and PCE2 were most closely related to the CarE genes from other phytophagous mites. The transcriptional profiles of two CarE genes among developmental stages (egg, larva, nymph, adult female, and adult male), after exposing to four acaricides (avermectin, azocyclotin, pyridaben, and spirodiclofen) and acid rain were investigated using real-time quantitative PCR (qPCR). The results showed that during development, PCE1 was highly expressed at the egg stage, whereas PCE2 was abundantly expressed at the adult stage of males. The expression levels of PCE1 were highly induced upon exposure to acaricides and acid rain. On the other hand, the expression levels of PCE2 were increased after treatment with avermectin and pyridaben. These results suggest that PCE1 and PCE2 may have distinct roles in different developmental stages and participate in the detoxification of acaricides.

Journal ArticleDOI
TL;DR: The hypothesis that JH influences migratory capacity and oogenesis in the rice leaf roller, Cnaphalocrocis medinalis, is posed and data reveal a JH-sensitive stage in adulthood during which JH affects the oocyte-flight syndrome in C.medinalis.
Abstract: Juvenile hormone (JH) influences many aspects of insect biology, including oogenesis-flight syndrome tradeoffs between migration and reproduction. Drawing on studies of many migratory insects, we posed the hypothesis that JH influences migratory capacity and oogenesis in the rice leaf roller, Cnaphalocrocis medinalis. We treated adults moths (days 1, 2 and 3 postemergence) with the JH analog (JHA), methoprene, and then recorded the influences of JHA treatments on reproduction. JHA treatment on day 1 postemergence, but not on the other days, shortened the preoviposition period, although JHA did not influence total fecundity, oviposition period, or longevity. We infer day 1 postemergence is the JH-sensitive stage to influence reproduction. Therefore, we treated moths on day 1 postemergence with JHA and recorded flight capacity, flight muscle mass, and triacylglycerol (TAG) accumulation. JHA treatments did not influence flight speed, but led to reductions in flight durations and flight distances. At day 3 posttreatment (PT), JHA-treated females flew shorter times and less distance than the controls; JHA-treated males, however, only flew shorter times than the controls. JHA treatments led to reductions in flight muscle mass in females at days 2-3 PT and reductions in TAG content in females at day 3 PT, but, these parameters were not influenced by JHA in males. These findings strongly support our hypothesis, from which we infer that JH is a major driver in C. medinalis oogenesis-flight syndrome tradeoffs. Our data also reveal a JH-sensitive stage in adulthood during which JH influences the oocyte-flight syndrome in C. medinalis.

Journal ArticleDOI
TL;DR: This study examined whether the production of GSH varies between species and within individuals in accordance with an insect's need for antioxidant defense and found that a large fraction of total Cys is used to produce GSH, suggesting that the large allocation of Cys to GSH in highly defended species might produce a tradeoff by limiting the amount ofCys available for rapid growth.
Abstract: Sulfur amino acids [cysteine (Cys) and methionine (Met)] play two major roles during animal development: protein synthesis for growth and glutathione synthesis for defense. For caterpillars, the levels of sulfur amino acids found in foliar protein can be especially low relative to their nutritional needs. Previous work has measured concentrations of glutathione (GSH; containing Cys) in specific animal tissues, but has not examined whole-body levels to ascertain the costliness of this defense in terms of Cys allocation. This study examined whether the production of GSH varies between species and within individuals in accordance with an insect's need for antioxidant defense. Secondly, we quantified the allocation of total Cys (peptide-bound plus free Cys) to GSH in caterpillars as an estimate of its cost. Two contrasting species were compared: Lymantria dispar (Lymantriidae), a species that is highly defended, and Malacosoma disstria (Lasiocampidae), a species that is less defended. As expected, GSH levels were significantly higher in L. dispar than in M. disstria. Consistent with the function of the midgut as a first line of defense against ingested toxins, GSH levels were significantly higher in these tissues than in the whole bodies of both species. A major finding in this study was that a large fraction of total Cys is used to produce GSH: GSH in the midguts of L. dispar and M. disstria contained 23 and 21%, respectively, of the total Cys in these tissues, and the GSH in their remaining body tissues contained 19 and 17% of the total Cys in these tissues. Levels of total Cys in caterpillar tissues followed the same pattern of distribution as did GSH, producing a strong association between GSH and total Cys (R(2) = 0.794). We conclude that GSH is a costly defense, especially in generalist tree-feeding species such as L. dispar. These results further suggest that the large allocation of Cys to GSH in highly defended species might produce a tradeoff by limiting the amount of Cys available for rapid growth.

Journal ArticleDOI
TL;DR: It is suggested that the ecdysone produced centrally in the prothoracic glands, could have been transformed into 20E in the testes, where Sl-shade is well expressed, and that the measured ecdysteroids in thetestes result from the activity of the genes under study.
Abstract: We investigated here the ecdysteroid titers and the expression of six genes coding for known enzymes of the ecdysteroid biosynthesis in the testes of last instar larvae of the pest cotton leafworm, Spodoptera littoralis. We showed that the timing of the ecdysteroid profile was the same in testes and in hemolymph, with a small peak at day 2 and a large one at day 4 after ecdysis. Ecdysone and 20-hydroxyecdysone (20E) were detected in both tissues. 20E was the major ecdysteroid in testes and in hemolymph from day 4. Interestingly, the gene expression of the steroidogenetic enzymes, Neverland, and the five cytochrome P450 enzymes encoded by the Halloween genes was confirmed in the testes, and varied during the instar. However, from the data obtained so far, we cannot conclude that the measured ecdysteroids in the testes result from the activity of the genes under study. Indeed, it is suggested that the ecdysone produced centrally in the prothoracic glands, could have been transformed into 20E in the testes, where Sl-shade is well expressed.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrated that Asobara japonica venom did not affect host humoral immune responses, determined as expression of antimicrobial peptide (AMP) genes, but significantly diminished two cellular responses by host hemocytes.
Abstract: The endoparasitoid wasp Asobara japonica has highly poisonous venom: the host Drosophila larvae are killed by envenomation at a dose that is naturally injected by the female wasp at parasitism. This insecticidal venom is neutralized, however, because A. japonica introduces lateral oviduct components soon after venom injection at oviposition. Although the venom and lateral oviduct components of this parasitoid have been partially characterized, how the venom components favor successful development of wasp eggs and larvae in the host remains ambiguous. Here, we demonstrated that A. japonica venom did not affect host humoral immune responses, determined as expression of antimicrobial peptide (AMP) genes, but significantly diminished two cellular responses, spreading and phagocytosis, by host hemocytes. Moreover, venom components drastically elevated a serine protease-like activity 4 h after its injection. The lateral oviduct components did not negate the detrimental effects of the venom on host cellular immunities, but significantly reduced the venom-induced elevation of protease activity. Both active factors in venom and lateral oviduct components were roughly characterized as heat-labile substances with a molecular mass of at least 10 kDa. Finally, venom of A. japonica, with a wide host range, was found to be much more toxic than that of Asobara rossica, which has a limited host range. These results reveal that A. japonica venom toxicity allows exploitation of a broader range of host insects because it is essential to overcome cellular immune responses of the host for successful parasitism.

Journal ArticleDOI
TL;DR: A cluster of eight short-chain dehydrogenases are identified in the mosquito Aedes aegypti, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.
Abstract: The short-chain dehydrogenases (SDR) constitute one of the oldest and largest families of enzymes with over 46,000 members in sequence databases. About 25% of all known dehydrogenases belong to the SDR family. SDR enzymes have critical roles in lipid, amino acid, carbohydrate, hormone, and xenobiotic metabolism as well as in redox sensor mechanisms. This family is present in archaea, bacteria, and eukaryota, emphasizing their versatility and fundamental importance for metabolic processes. We identified a cluster of eight SDRs in the mosquito Aedes aegypti (AaSDRs). Members of the cluster differ in tissue specificity and developmental expression. Heterologous expression produced recombinant proteins that had diverse substrate specificities, but distinct from the conventional insect alcohol (ethanol) dehydrogenases. They are all NADP⁺-dependent and they have S-enantioselectivity and preference for secondary alcohols with 8-15 carbons. Homology modeling was used to build the structure of AaSDR1 and two additional cluster members. The computational study helped explain the selectivity toward the (10S)-isomers as well as the reduced activity of AaSDR4 and AaSDR9 for longer isoprenoid substrates. Similar clusters of SDRs are present in other species of insects, suggesting similar selection mechanisms causing duplication and diversification of this family of enzymes.

Journal ArticleDOI
TL;DR: The results showed that females began to call on the first night after eclosion and called mainly during the second half of scotophase, inferring that the I. sibirica mating system is organized around circadian control of mate calling and mating.
Abstract: The adult behavior and sex pheromone titers of Isoceras sibirica Alpheraky (Lepidoptera, Cossidae) were investigated to determine the diel periodicity of pheromone production during one scotophase and the effect of age on pheromone production. The results showed that females began to call on the first night after eclosion and called mainly during the second half of scotophase. The percentage of females calling was highest in 1- to 3-day-old females and lowest in 4- to 5-day-old females. The onset of scotophase calling occurred earlier as females aged. The responses to the pheromone source of males aged 1-5 days were monitored in a wind tunnel. Peak activity was observed in 3-day-old males, 4 h after the onset of the scotophase. The mating of all 1- to 3-day-old moths began after 6 h in scotophase and some 4- to 5-day-old moths began during the fourth hour. The average duration of copulation was 34.2 ± 18.2 min (N = 45) and ranged from 17.0 to 56.3 min. Gas chromatography-mass spectrometry (GC-MS) analysis of hexane extracts of pheromone glands revealed that the titers of the three sex pheromone components, (Z)-9-tetradecenyl acetate (Z9-14:Ac), (Z)-7-tetradecenyl acetate, and (Z)-9-hexadecadecenyl acetate were very low on the first night after eclosion, increased and peaked on the second night, then decreased with age. During the first 4 h of the scotophase, titers remained invariant, whereas from 4 to 6 h, pheromone titers increased sharply and peaked, with the greatest peak observed in the primary component, Z9-14:Ac. After the peak, all recorded titers declined until they reached a minimum between the ninth and tenth hours of the dark cycle. In field tests, most of the males were captured in traps during 00:00-02:00 h (13 ± 0.48), and females aged 2 days attracted more males than females of other ages. We infer that the I. sibirica mating system is organized around circadian control of mate calling and mating.

Journal ArticleDOI
TL;DR: A significant increase in AOE activity during short stress period indicated a possible transitory defense mechanism to avoid OS-induced cell damage.
Abstract: In this study, larvae of silkworm Bombyx mori were subjected to low temperature, hypoxia, and viral infection to evaluate stressor-mediated oxidative stress (OS) and the induction of antioxidant enzymes (AOEs). Exposure to cold, hypoxia, and nuclear polyhedral virus for 24 h resulted in a significant increase in hydrogen peroxide generation with concomitant increase in lipid peroxidation (LPO) and protein carbonyl levels in midgut and hemocytes. AOEs such as superoxide dismutase and catalase also increased significantly in both the tissues and the increased AOEs reverted to control values during recovery. Ontogenic stages of the larvae showed a diminishing ability of the tissues to overcome OS induced by the stressors. A significant increase in AOE activity during short stress period indicated a possible transitory defense mechanism to avoid OS-induced cell damage.

Journal ArticleDOI
TL;DR: It is concluded that the actions of venom on host gene expression influence host biology in ways that benefit the development and emergence of the next generation of parasitoids.
Abstract: Insect hosts have evolved potent innate immunity against invasion by parasitoid wasps. Host/parasitoids live in co-evolutionary relationships. Nasonia vitripennis females inject venom into their dipteran hosts just prior to laying eggs on the host's outer integument. The parasitoid larvae are ectoparasitoids because they feed on their hosts within the puparium, but do not enter the host body. We investigated the influence of N. vitripennis venom on the gene expression profile of hemocytes of their hosts, pupae of the housefly, Musca domestica. We prepared venom by isolating venom glands and treated experimental host pupae with venom. We used suppression subtractive hybridization (SSH) to determine the influence of venom on hemocyte gene expression. At 1 h post treatment, we recorded decreases in transcript levels of 133 EST clones derived from forward a subtractive library of host hemocytes and upregulation in transcript levels of 111 EST clones from the reverse library. These genes are related to immune and stress response, cytoskeleton, cell cycle and apoptosis, metabolism, transport, and transcription/translation regulation. We verified the reliability of our data with reverse transcription quantitative real-time PCR analysis of randomly selected genes, and with assays of enzyme activities. These analyses showed that the expression level of all selected genes were downregulated after venom treatment. Outcomes of our experiments support the hypothesis that N. vitripennis venom influences the gene expression in host hemocytes. We conclude that the actions of venom on host gene expression influence host biology in ways that benefit the development and emergence of the next generation of parasitoids.

Journal ArticleDOI
TL;DR: Two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library and form two mature peptides, NPF1a andNPF1b by modification of transcripts.
Abstract: Neuropeptide F (NPF), the invertebrate homolog of neuropeptide Y (NPY) in vertebrates, shares similarity of structure and function with NPY. However, a few NPYs were also found in some insect species. In this paper, two neuropeptide genes encoding a NPF and a NPY were cloned from a tobacco budworm Helicoverpa assulta cDNA library. The npf1 gene further produces two splicing variants of rnRNAs, i.e. npf1a (lacks the 120 bp segment) and npf1b (includes a 120 bp segment). These two splicing variants form two mature peptides, NPF1a and NPF1b by modification of transcripts. NPF and NPY co-exist in H. assulta.

Journal ArticleDOI
TL;DR: Primary cultures using KCs of bumblebees worker brains offer a tool to assess sublethal effects of neurotoxic pesticides in vitro and have the potential to contribute to the understanding of mechanisms of plasticity in the adult bumblebee brain.
Abstract: Bumblebees are important pollinators in natural and agricultural ecosystems. The latter results in the frequent exposure of bumblebees to pesticides. We report here on a new bioassay that uses primary cultures of neurons derived from adult bumblebee workers to evaluate possible side-effects of the neonicotinoid pesticide imidacloprid. Mushroom bodies (MBs) from the brains of bumblebee workers were dissected and dissociated to produce cultures of Kenyon cells (KCs). Cultured KCs typically extend branched, dendrite-like processes called neurites, with substantial growth evident 24-48 h after culture initiation. Exposure of cultured KCs obtained from newly eclosed adult workers to 2.5 parts per billion (ppb) imidacloprid, an environmentally relevant concentration of pesticide, did not have a detectable effect on neurite outgrowth. By contrast, in cultures prepared from newly eclosed adult bumblebees, inhibitory effects of imidacloprid were evident when the medium contained 25 ppb imidacloprid, and no growth was observed at 2,500 ppb. The KCs of older workers (13-day-old nurses and foragers) appeared to be more sensitive to imidacloprid than newly eclosed adults, as strong effects on KCs obtained from older nurses and foragers were also evident at 2.5 ppb imidacloprid. In conclusion, primary cultures using KCs of bumblebee worker brains offer a tool to assess sublethal effects of neurotoxic pesticides in vitro. Such studies also have the potential to contribute to the understanding of mechanisms of plasticity in the adult bumblebee brain.

Journal ArticleDOI
TL;DR: The study demonstrates the role of EcR in the transduction of ecdysteroid response in Monochamus alternatus and cloned and characterized two isoforms of EcDysone receptors named MaEcR A and Ma EcR B.
Abstract: The ecdysone receptor (EcR) is the hormonal receptor of ecdysteroids, which regulates insect growth and development. In this study, we cloned and characterized two isoforms of EcR in Monochamus alternates named MaEcR A and MaEcR B. The cDNAs of MaEcR A and MaEcR B have open repeating frames of 1,695 and 1,392 bp, respectively. The deduced proteins have the same C-terminal sequence and varied in N-terminal, and are consistent with reports on other insect species, particularly with the receptor of another coleopteran, Tribolium castaneum. The isoform-specific developmental expression profile of EcR in the epidermis and the midgut were analyzed with quantitative real-time reverse-transcriptase polymerase chain reaction in the pupal stage. RNA interference (RNAi) with common or isoform-specific regions induced developmental stagnation. When treated in the later larval stage, RNAi with either the common sequence or an EcR A specific sequence caused more severe effects and most larvae died prior to adulthood. The EcR B specific sequence caused less severe effects and about half of the treated larvae became adults, but some showed developmental defects. RNAi with both isoforms at early pupal stage attenuated the expression of 20E-regulated genes E74, E75, and HR3. The study demonstrates the role of EcR in the transduction of ecdysteroid response in Monochamus alternatus.

Journal ArticleDOI
Yamin Huo1, Lei Chen1, Mingbo Qu1, Qi Chen1, Qing Yang1 
TL;DR: The recombinant protein OfFDL in a soluble and active form was obtained with high purity through a two-step purification strategy and several kinetic parameters including kcat/Km values toward four artificial substrates and Ki values of three representative hexosaminidase inhibitors were obtained.
Abstract: The β-N-acetylhexosaminidase FDL specifically removes the β-1,2-GlcNAc residue conjugated to the α-1,3-mannose residue of the core structure of insect N-glycans, playing significant physiological roles in post-translational modification in the Golgi apparatus. Little is known about its enzymatic properties. We obtained the OfFDL gene from the insect Ostrinia furnacalis by RT-PCR. The full length cDNA of FDL is 2241 bp carrying an opening reading frame of 1923 bp encoding 640 amino acids. The recombinant protein OfFDL in a soluble and active form was obtained with high purity through a two-step purification strategy. The recombinant OfFDL exclusively hydrolyzes the terminal β-1,2-GlcNAc residue from the α-1,3 branch instead of the α-1,6 branch of the substrate GnGn-PA. Several kinetic parameters including kcat/Km values toward four artificial substrates and Ki values of three representative hexosaminidase inhibitors were obtained.

Journal ArticleDOI
TL;DR: This study cloned the full-length cDNA of a CP gene from Apis cerana cerana and infer that AccCPR24 acts in honeybee development and in protecting these insects from abiotic stresses.
Abstract: Cuticular proteins (CPs) are key components of insect cuticle, a structure that plays a pivotal role in insect development and defense. In this study, we cloned the full-length cDNA of a CP gene from Apis cerana cerana (AccCPR24). An amino acid sequence alignment indicated that AccCPR24 contains the conserved Rebers and Riddiford consensus sequence and shares high similarity with the genes from other hymenopteran insects. We then isolated the genomic DNA and found that the first intron, which is present in other CP genes, is absent in AccCPR24. Real-time quantitative polymerase chain reaction (qPCR) analysis revealed that AccCPR24 is highly expressed in the late pupal stage and midgut. Expression was inhibited by an exogenous ecdysteroid in vitro but was enhanced by this hormone in vivo; environmental stressors, such as heavy metals and pesticides, also influenced gene expression. In addition, a disc diffusion assay showed that AccCPR24 enhanced the ability of bacterial cells to resist multiple stresses. We infer from our results that AccCPR24 acts in honeybee development and in protecting these insects from abiotic stresses.