scispace - formally typeset
Search or ask a question

Showing papers in "Archives of Microbiology in 1994"


Journal ArticleDOI
TL;DR: A strictly anaerobic, gram-positive, sporeforming, rod-like, motile bacterium was enriched from rabbit feces, and isolated using carbon monoxide as sole source of energy and carbon.
Abstract: A strictly anaerobic, gram-positive, sporeforming, rod-like, motile bacterium was enriched from rabbit feces, and isolated using carbon monoxide as sole source of energy and carbon. The isolate metabolizes CO with ethanol, acetate and CO2 as end-products. Other substrates used as carbon and energy sources include CO2 plus H2, pyruvate, xylose, arabinose, fructose, rhamnose, and l-glutamate. The optimum temperature for growth is 37°C. The optimum pH for chemolithotrophic growth lies around 5.8 to 6.0 Sulfate is not reduced. Growth is inhibited either by penicillin, chloramphenicol, tetracyclin or ampicillin, each at 100 μg per ml. The isolate has a DNA-base composition of 25.9±0.6% guanine plus cytosine. The isolate represents a new species of Clostridium for which the name Clostridium autoethanogenum is proposed. The type strain is strain JA1-1

336 citations


Journal ArticleDOI
TL;DR: The findings indicate that the hyperthermophilic anaerobic eubacterium T. maritima ferments sugars (glucose) to acetate, CO2 and H2 involving the Embden-Meyerhof pathway, phosphate acetyltransferase and acetate kinase differs from thehyperthermophile archaeon Pyrococcus furiosus.
Abstract: The hyperthermophilic anaerobic eubacterium Thermotoga maritima was grown on glucose as carbon and energy source. During growth 1 mol glucose was fermented to 2 mol acetate, 2 mol CO2 and 4 mol H2. The molar growth yicld on glucose (Yglucose) was about 45 g cell dry mass/mol glucose. In the presence of elemental sulfur growing cultures of T. maritima converted 1 mol glucose to 2 mol acetate, 2 mol CO2 about 0.5 mol H2 and about 3.5 mol H2S. Yglucose was about 45 g/mol. Cell extracts contained all enzymes of the Embden-Meyerhof pathway: hexokinase (0.29 U/mg, 50°C), glucose-6-phosphate isomerase (0.56 U/mg, 50°C), phosphofructokinase (0.19 U/mg, 50° C), fructose-1,6-bisphosphate aldolase (0.033 U/mg, 50°C), triosephosphate isomerase (6.3 U/mg, 50°C), glyceraldehyde-3-phosphate dehydrogenase (NAD+ reducing: 0.63 U/mg, 50°C), phosphoglycerate kinase (3.7 U/mg, 50°C), phosphoglycerate mutase (0.4 U/mg, 50°C); enolase (4 U/mg, 80°C), pyruvate kinase (0.05 U/mg, 50°C). Furthermore, cell extracts contained pyruvate: ferredoxin oxidoreductasee (0.43 U/mg, 60°C); NADH: ferredoxin oxidoreductase (benzylviologen reduction: 0.46 U/mg, 80°C); hydrogenase (benzylviologen reduction: 15 U/mg, 80°C), phosphate acetyltransferase (0.13 U/mg, 80°C), acetate kinase (1.2 U/mg, 55°C), lactate dehydrogenase (0.16 U/mg, 80°C) and pyruvate carboxylase (0.02 U/mg, 50°C). The findings indicate that the hyperthermophilic eubacterium T. maritima ferments sugars (glucose) to acetate, CO2 and H2 involving the Embden-Meyerhof pathway, phosphate acetyltransferase and acetate kinase. Thus, the organism differs from the hyperthermophilic archaeon Pyrococcus furiosus which ferments sugars to acetate, CO2 and H2 involving a modified non-phosphorylated Entner-Doudoroff pathway and acetyl-CoA synthetase (ADP forming).

270 citations


Journal ArticleDOI
TL;DR: The present communication describes some features of the dechlorination reaction in growing cultures, cell suspensions, and cell extracts of D. multivorans that were sensitive to potential alternative electron acceptors such as fumarate or sulfur; nitrate or sulfate had no significant effect on PCE reduction.
Abstract: Dehalospirillum multivorans is a strictly anaerobic bacterium that is able to dechlorinate tetrachloroethene (perchloroethylene; PCE) via trichloroethene (TCE) to cis-1,2-dichloroethene (DCE) as part of its energy metabolism. The present communication describes some features of the dechlorination reaction in growing cultures, cell suspensions, and cell extracts of D. multivorans. Cell suspensions catalyzed the reductive dechlorination of PCE with pyruvate as electron donor at specific rates of up to 150 nmol (chloride released) min-1 (mg cell protein)-1 (300 μM PCE initially, pH 7.5, 25°C). The rate of dechlorination depended on the PCE concentration; concentrations higher than 300 μM inhibited dehalogenation. The temperature optimum was between 25 and 30°C; the pH optimum at about 7.5. Dehalogenation was sensitive to potential alternative electron acceptors such as fumarate or sulfur; nitrate or sulfate had no significant effect on PCE reduction. Propyl iodide (50 μM) almost completely inhibited the dehalogenation of PCE in cell suspensions. Cell extracts mediated the dehalogenation of PCE and of TCE with reduced methyl viologen as the electron donor at specific rates of up to 0.5 μmol (chloride released) min-1 (mg protein).-1 An abiotic reductive dehalogenation could be excluded since cell extracts heated for 10 min at 95°C were inactive. The PCE dehalogenase was recovered in the soluble cell fraction after ultracentrifugation. The enzyme was not inactivated by oxygen.

196 citations


Journal ArticleDOI
TL;DR: The divergence in the 16S ribosomal RNA sequences between the new isolate and Thermodesulfobacterium commune suggests that these two thermophilic sulfate-reducing bacteria represent different genera, and these two bacteria depict a lineage that branches deeply within the Bacteria domain and which is clearly distinct from previously defined phylogenetic lines.
Abstract: A thermophilic sulfate-reducing vibrio isolated from thermal vent water in Yellowstone Lake, Wyoming, USA is described. The gram-negative, curved rod-shaped cells averaged 0.3 micrometer wide and 1.5 micrometers long. They were motile by means of a single polar flagellum. Growth was observed between 40 degrees and 70 degrees C with optimal growth at 65 degrees C. Cultures remained viable for one year at 27 degrees C although spore-formation was not observed. Sulfate, thiosulfate and sulfite were used as electron acceptors. Sulfur, fumarate and nitrate were not reduced. In the presence of sulfate, growth was observed only with lactate, pyruvate, hydrogen plus acetate, or formate plus acetate. Pyruvate was the only compound observed to support fermentative growth. Pyruvate and lactate were oxidized to acetate. Desulfofuscidin and c-type cytochromes were present. The G + C content was 29.5 mol%. The divergence in the 16 S ribosomal RNA sequences between the new isolate and Thermodesulfobacterium commune suggests that these two thermophilic sulfate-reducing bacteria represent different genera. These two bacteria depict a lineage that branches deeply within the Bacteria domain and which is clearly distinct from previously defined phylogenetic lines of sulfate-reducing bacteria. Strain YP87 is described as the type strain of the new genus and species Thermodesulfovibrio yellowstonii.

176 citations


Journal ArticleDOI
TL;DR: Although comparison of the signature nucleotide pattern of the five established subclasses of Proteobacteria with the 16S rDNA sequence of Holophaga foetida revealed a relationship to members of the δ-subclass, the phylogenetic position within the radiation of this class is so deep and dependent upon the number and selection of reference sequences that its affiliation to the ProteOBacteria must be considered tentative.
Abstract: A polyphasic approach was used in which genotypic and phenotypic properties of a gram-negative, obligately anaerobic, rod-shaped bacterium isolated from a black anoxic freshwater mud sample were determined. Based on these results, the name Holophaga foetida gen. nov., sp. nov. is proposed. This microorganism produced dimethylsulfide and methanethiol during growth on trimethoxybenzoate or syringate. The only other compounds utilized were pyruvate and trihydroxybenzenes such as gallate, phloroglucinol, or pyrogallol. The aromatic compounds were degraded to acetate. Although comparison of the signature nucleotide pattern of the five established subclasses of Proteobacteria with the 16S rDNA sequence of Holophaga foetida revealed a relationship to members of the δ-subclass, the phylogenetic position within the radiation of this class is so deep and dependent upon the number and selection of reference sequences that its affiliation to the Proteobacteria must be considered tentative. The type strain is H. foetida strain TMBS4 (DSM 6591).

175 citations


Journal ArticleDOI
TL;DR: Genomic typing by the rapid PCR-RFLP method is shown to be useful for an independant identification of strains and of the conjugative Ti plasmids.
Abstract: Chromosomes and Ti plasmids of 41 Agrobacterium strains, belonging to biovars 1, 2, 3, and Agrobacterium rubi species were characterized by the restriction fragment length polymorphism of PCR-amplified DNAs. Profiles that were obtained by the analysis of the amplified 16S rDNA confirmed the grouping of the strains according to their species. Higher polymorphism was detected in the intergenic spacer between the 16S rDNA and 23S rDNA genes, allowing efficient discrimination of strains. Identification of most strains was possible, and the genetic relatednesses of Agrobacterium strains could be estimated. The analysis of the plasmid Ti encoded regions between the tmr and nos genes, and the virA and virB2 genes, allowed fingerprinting of Ti plasmids. Genomic typing by the rapid PCR-RFLP method is thus shown to be useful for an independant identification of strains and of the conjugative Ti plasmids.

173 citations


Journal ArticleDOI
TL;DR: This review is focused mainly on different facets of transcriptional regulation, including changes in the gene dosage during replication, factor-dependent and independent activation and repression of transcription, but also post-transcriptional mechanisms affecting the maturation and assembly of ribosomal particles.
Abstract: The life style of bacteria such as Escherichia coli can be characterized as 'feast or famine'. As a consequence, bacteria have evolved mechanisms enabling efficient adaptation of their growth rates to the rapid changes in nutritional supply, but also to environmental alterations, like temperature, osmolarity or competition by other species. Bacteria are capable, for instance, in a very effective way, to change their protein synthesizing capacity according to the growth demands. However, there is a natural upper limit in the rate at which a single ribosome catalyzes polypeptide formation (ca. 20 amino acids/s) (Engbaek et al. 1973). Therefore, in fast-growing cells, the number of ribosomes has to increase in proportion to the cell mass (Gausing 1977). Since ribosomes are multi-component particles, composed of 3 different RNA molecules and at least 52 different proteins, coordination and balance in the synthesis of all components is a prerequisite for efficient ribosome formation. The key molecules for the regulation of ribosome biogenesis are the ribosomal RNAs (rRNAs). Their synthesis rates increase in proportion to the square of the cell growth rates, and the expression of many, if not all, of the ribosomal proteins is linked to the availability of the free rRNA fraction in the cell by a translational feedback mechanism (Nomura et al. 1984). Consequently, the regulation of rRNA synthesis is of prime importance for the rate of ribosome formation, and thus, for the establishment of conditions for rapid cell growth. It is only natural, therefore, that the synthesis of rRNAs is regulated in a very complex way, combining many different cellular parameters. Both, positive and negative regulatory mechanisms are acting in concert to maintain a balanced synthesis. Control is exerted at all different levels, including changes in the gene dosage during replication, factor-dependent and independent activation and repression of transcription, but also post-transcriptional mechanisms affecting the maturation and assembly of ribosomal particles. The multiplicity of the various different regulatory aspects is covered by several recent reviews (Lamond 1985; Lindahl and Zengel 1986; Nomura etal. 1984; Wagner 1989; Wagner et al. 1992). Exciting new findings have been discovered since then. This review is focused mainly on different facets of transcriptional regulation. In the first part some features of regulation related to the chromosomal organization and the tandem promoter arrangements of rRNA transcription units are summarized. Old and some new aspects of the mechanisms underlying the global regulation, known as stringent and growth rate control, will then be discussed. Finally, molecular mechanisms of transcription activation, the new identification of a specific repressor, and a model explaining the counteracting effects of transcription factors in the activation and repression of rRNA synthesis, according to the growth conditions, will be reported.

171 citations


Journal ArticleDOI
TL;DR: This article intends to inform a broader audience on a fascinating class of protein toxins (bacteriocins) which usually kill only cells of the same species.
Abstract: This article intends to inform a broader audience on a fascinating class of protein toxins (bacteriocins) which usually kill only cells of the same species. Those who gained a deeper interest in bacteriocins can find a comprehensive description of the field in a recent book based on a conference (James et al. 1992), and in more specialized review articles dealing with certain aspects (Pugsley 1984a, b), or certain colicins (De Graaf and Oudega 1986; Harkness and Olschlager 1991; Lazdunski et al. 1988). The older literature has been reviewed by Brandis and Smarda (1971), Reeves (1972), Hardy (1975) and Konisky (1982).

169 citations


Journal ArticleDOI
TL;DR: It is suggested that continuously oxygen-limited environments present a suitable ecological niche for the nitrite-oxidizing N. hamburgensis because of its larger population size and its specific affinity for oxygen.
Abstract: Chemolithotrophic ammonium- and nitrite-oxidizing bacteria are dependent on the presence of oxygen for the production of nitrite and nitrate, respectively. In oxygen-limited environments, they have to compete with each other as well as with other organotrophic bacteria for the available oxygen. The outcome of the competition will be determined by their specific affinities for oxygen as well as by their population sizes. The effect of mixotrophic growth by the nitrite-oxidizing Nitrobacter hamburgensis on the competition for limiting amounts of oxygen was studied in mixed continuous culture experiments with the ammonium-oxidizing Nitrosomonas europaea at different levels of oxygen concentrations.

138 citations


Journal ArticleDOI
TL;DR: A novel siderophore with both catecholate and hydroxamate functional groups was isolated from low-iron cultures of Acinetobacter baumannii, indicative of strain-to-strain variation in the ability to produce acinetobactin.
Abstract: A novel siderophore, called acinetobactin, with both catecholate and hydroxamate functional groups was isolated from low-iron cultures of Acinetobacter baumannii ATCC 19606. The structure was elucidated by chemical degradation, fast-atom bombardment mass spectrometry and 1H and 13C NMR spectroscopy. Acinetobactin was composed of omega-N-hydroxyhistamine, threonine and 2,3-dihydroxybenzoic acid, the last two components forming an oxazoline ring. Acinetobactin was structurally related to anguibactin, a plasmid-encoded siderophore of Vibrio anguillarum. The only difference was that acinetobactin possessed an oxazoline ring instead of a thiazoline ring. Four of 12 other clinical A. baumannii strains examined produced acinetobactin, indicative of strain-to-strain variation in the ability to produce acinetobactin. In addition, a relatively small amount of acinetobactin was also detected in A. haemolyticus ATCC 17906.

138 citations


Journal ArticleDOI
TL;DR: This review is limited to bacterial membrane-bound hydrogenases which physiologically function as H zuptake hydrogenases and belong to Class I of [NiFe]hydrogenases according to the classification of Voordouw (1992 and of Wu and Mandrand (1993); focus is on the remarkable progresses concerning identification of the genes involved in hydrogenase biosynthesis in the eubacteria.
Abstract: The existence of a class of enzymes capable of using molecular hydrogen as substrate was discovered some 60 years ago by Stephenson and Stickland (1931) who demonstrated the presence of an enzyme system capable of activating H 2 in Escherichia coli, and proposed the name \"hydrogenase'\" for this biological H 2 catalyst. Gray and Gest (1965) pointed out the role of molecular hydrogen in the anaerobic energy metabolism of many microorganisms. Since then, hydrogenases (hydrogen: acceptor oxidoreductase EC 1.12.1.2; 1.12.2.1; 1.18.99.1), which catalyse the production or consumption of hydrogen gas with suitable electron donors or acceptors according to the reversible reaction: H 2 <::> 2 H + + 2 e-, have been found in a wide variety of bacteria including cyanobacteria (formerly named blue green algae). Hydrogenase activity has also been found in certain eukaryotes, e.g., in the hydrogenosomes of protozoa without mitochondria (Miiller 1988), such as Trichomonas vaginalis (Payne et al., 1993); from the hydrogenosomes of the fungus Neocallimastix sp. L2, a hydrogenase, probably of the nickel-containing type, has recently been isolated (Marvin-Sikkema et al. 1993). This review is limited to bacterial membrane-bound hydrogenases which physiologically function as H zuptake hydrogenases and belong to Class I of [NiFe]hydrogenases according to the classification of Voordouw (1992) and of Wu and Mandrand (1993); focus is on the remarkable progresses concerning identification of the genes involved in hydrogenase biosynthesis in the eubacteria (Rhodobacter capsulatus, Bradyrhizobium japonicum, Rhizobium leguminosarum, Azotobacter chroococcure, A. vinelandii, Escherichia coli (for isoenzymes 1 and 2), Alcaligenes eutrophus, Wolinella succinogenes) grouped in Class I by Wu and Mandrand (1993).

Journal ArticleDOI
TL;DR: Results clearly showed that both the methyl and carboxyl groups of acetate were oxidized to CO2 and that CO2 was reduced to CH4 through hydrogenotrophic methanogenesis.
Abstract: In a mesophilic (37°C) triculture at a high ammonium concentration and pH8, methanogenesis from acetate occurred via syntrophic acetate oxidation. Studies with 14C-labelled substrates showed that the amount of labelled methane formed from 1-14C-labelled acetate was equal to that formed from 2-14C-labelled acetate. Labelled methane was also formed from H14CO3-. These results clearly showed that both the methyl and carboxyl groups of acetate were oxidized to CO2 and that CO2 was reduced to CH4 through hydrogenotrophic methanogenesis. During growth of the triculture, a significant isotopic exchange between the carboxyl group of acetate and bicarbonate occurred. As a result, there was a decrease in the specific activity of 1-14C-acetate, and the production of 14CO2 was slightly higher from 1-14C- than from 2-14C-acetate. For each mole acetate degraded, 0.94 mol methane was formed; 9.2 mmol acetate was metabolized during the 294 days of incubation.

Journal ArticleDOI
TL;DR: Alanine formation was shown to occur via an alanine aminotransferase, which exhibited a specific activity in cell-free extract of up to 6.0 U/mg (90°C; direction of pyruvate formation), enabling P. furiosus to adjust its fermentation, depending on the redox potential of the terminal electron acceptor.
Abstract: The hyperthermophilic archaeon Pyrococcus furiosus was found to form substantial amounts of l-alanine during batch growth on either cellobiose, maltose or pyruvate. Acetate, CO2 and H2 were produced next to alanine. The carbon- and electron balances were complete for all three substrates. Under standard growth conditions (N2/CO2 atmosphere) an alanine/acetate ratio of about 0.3 was found for either substrate. The alanine /acetate ratio was influenced, however, by the hydrogen partial pressure. In the presence of S0 or in coculture with Methanococcus jannaschii this ratio was only 0.07, whereas under a H2/CO2 atmosphere this ratio could amount up to 0.8. Alanine formation was also aflected by the NHinf4sup+concentration, i.e. below 4 mM, NHinf4sup+becomes limiting to alanine formation. Alanine formation was shown to occur via an alanine aminotransferase, which exhibited a specific activity in cell-free extract of up to 6.0 U/mg (90°C; direction of pyruvate formation). The alanine aminotransferase probably cooperates with glutamate dehydrogenase (up to 23 U/mg; 90°C) and ferredoxin: NADP+ oxidoreductase (up to 0.7 U/mg, using methyl viologen; 90°C) to recycle the electron acceptors involved in catabolism. Thus, the existence of this unusual alanine-forming branch enables P. furiosus to adjust its fermentation, depending on the redox potential of the terminal electron acceptor.

Journal ArticleDOI
TL;DR: It is proposed that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols, and in another pathway the methyl side chain is hydroxylated to-CH2OH which is further converted to-CHO and-COOH resulting in the creation of naphthoic acid.
Abstract: Pseudomonas putida CSV86, a soil bacterium, grows on 1- and 2-methylnaphthalene as the sole source of carbon and energy. In order to deduce the pathways for the biodegradation of 1- and 2-methylnaphthalene, metabolites were isolated from the spent medium and purified by thin layer chromatography. Emphasis has been placed on the structural characterisation of isolated intermediates by CC-MS, demonstration of enzyme activities in the cell free extracts and measurement of oxygen uptake by whole cells in the presence of various probable metabolic intermediates. The data obtained from such a study suggest the possibility of occurrence of multiple pathways in the degradation of 1- and 2-methylnaphthalene. We propose that, in one of the pathways, the aromatic ring adjacent to the one bearing the methyl moiety is oxidized leading to the formation of methylsalicylates and methylcatechols. In another pathway the methyl side chain is hydroxylated to -CH2-OH which is further converted to -CHO and -COOH resulting in the formation of naphthoic acid as the end product. In addition to this, 2-hydroxymethylnaphthalene formed by the hydroxylation of the methyl group of 2-methylnaphthalene undergoes aromatic ring hydroxylation. The resultant dihydrodiol is further oxidised by a series of enzyme catalysed reactions to form 4-hydroxymethyl catechol as the end product of the pathway.

Journal ArticleDOI
TL;DR: This is the first unequivocal demonstration of the ability of an Archacon to grow by mineralization of aromatic substrates, and it adds a new dimension to the appreciation of the physiological diversity of this group of prokaryotes.
Abstract: A pink-pigmented halophilic Archaeon, Strain D1227, was isolated from soil contaminated with oil brine and shown to be a member of the genus Haloferax, based on: (1) its hybridization with a 16S rRNA probe universal for the Archaea; (2) its resistance to a broad spectrum of antibiotics that affect Bacteria; (3) its requirement for at least 0.86 M NaCl and 25 mM Mg2+ for growth; (4) its possession of C50-carotenoids characteristic of the halophilic Arachaea; (5) the thin layer chromatographic pattern of its polar lipids, which was identical to that of other species of Haloferax; and (6) its pleomorphic cell morphology. However, in contrast to the known species of Archaea, Haloferax strain D1227 was able to use aromatic substrates (e.g., benzoate, cinnamate, and phenylpropanoate) as sole carbon and energy sources for growth. Physiologically similar organisms, such as Haloferax volcanii, Haloferax mediterrani, Haloarcula vallismortis, and Haloarcula hispanica, could not grow on these aromatic substrates. When grown on 14C-benzoate, strain D1227 mineralized 70% of the substrate and assimilated 19% of the 14C-label into cell biomass. In addition to growth on aromatic substrates, D1227 was also capable of growth on a variety of carbohydrates and organic acids. Optimum growth of strain D1227 occurred at 45°C in media containing 1.7–2.6 M NaCl and 100 mM Mg2+. Under optimum growth conditions, the cell shape varied from that of an oblate spheroid on mineral salts medium alone, to discshaped, irregular or triangular cells on the same medium amended with yeast extract and tryptone. To our knowledge, this is the first unequivocal demonstration of the ability of an Archacon to grow by mineralization of aromatic substrates, and it adds a new dimension to our appreciation of the physiological diversity of this group of prokaryotes.

Journal ArticleDOI
TL;DR: The results indicate that a proton-potential-driven process is involved in hydrogen release from butyrate or benzoate oxidation, and localization of enzymes involved inbutyrate oxidation by S. wolfei and S. buswellii revealed that ATP synthase, hydrogenase, and butyryl-CoA dehydrogenase were at least partially membrane-associated.
Abstract: Syntrophomonas wolfei and Syntrophus buswellii were grown with butyrate or benzoate in a defined binary coculture with Methanospirillum hungatei. Both strains also grew independent of the partner bacteria with crotonate as substrate. Localization of enzymes involved in butyrate oxidation by S. wolfei revealed that ATP synthase, hydrogenase, and butyryl-CoA dehydrogenase were at least partially membrane-associated whereas 3-hydroxybutyryl-CoA dehydrogenase and crotonase were entirely cytoplasmic. Inhibition experiments with copper chloride indicated that hydrogenase faced the outer surface of the cytoplasmic membrane. Suspensions of butyrate-or benzoate-grown cells of either strain accumulated hydrogen during oxidation of butyrate or benzoate to a low concentration that was thermodynamically in equilibrium with calculated reaction energetics. The protonophore carbonylcyanide m-chlorophenyl-hydrazone (CCCP) and the proton-translocating ATPase inhibitor N,N′dicyclohexylcarbodiimide (DCCD) both specifically inhibited hydrogen formation from butyrate or benzoate at low concentrations, whereas hydrogen formation from crotonate was not affected. A menaquinone was extracted from cells of S. wolfei and S. buswellii grown syntrophically in a binary methanogenic culture. The results indicate that a proton-potential-driven process is involved in hydrogen release from butyrate or benzoate oxidation.

Journal ArticleDOI
TL;DR: In this paper, modified fluorescence and colorimetric assays were used for the initial detection of 2-hydroxybiphenyl (OH-BP) in micro-titer plates; subsequently, isolates were grown in wells of microtiter plate and screened for the production of desulfurization product.
Abstract: Gram-positive, non-spore-forming, non-acid-fast, rod-shaped aerobic bacteria with the ability to desulfurize dibenzothiophene (DBT) or dibenzosulfone (DBTO2) were isolated from soil samples contaminated with fossil fuels. Using a bioavailability method, cells with the desired DbtS+ phenotype were enriched. Modified fluorescence and colorimetric assays were used for the initial detection of 2-hydroxybiphenyl (OH-BP) in microtiter plates; subsequently, isolates were grown in wells of microtiter plates and screened for the production of desulfurization product. Fluorescence under UV light and the production of colored product in the phenol assay were used as presumptive indications of production of OH-BP. Confirmation of the presence of OH-BP was achieved with HPLC, UV-absorbance, and mass spectrometry. Nutrient utilization and fatty acid composition (as discerned with Biolog plates and gas chromatography, respectively) were used to identify presumptively the strains as Rhodococcus erythropolis; colony and cell morphology may not be consistent with the identification achieved by nutrient utilization and fatty acid composition. The desulfurization end product, OH-BP, can not be used as carbon source by the tested strain, N1-36.

Journal ArticleDOI
TL;DR: The finding of this dehydratase means that all of the enzymes necessary for fermentation of succinate plus ethanol by C. kluyveri have now been demonstrated to exist in this organism and confirms the proposed pathway involving a reduction of succinated via 4-hydroxybutyrate to butyrate.
Abstract: Anaerobically prepared cell extracts of Clostridium kluyveri grown on succinate plus ethanol contained high amounts of 4-hydroxybutyryl-CoA dehydratase, which catalyzes the reversible dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA. The enzyme was purified 12-fold under strictly anaerobic conditions to over 95% homogeneity and had a specific activity of 123 nkat mg-1. The finding of this dehydratase means that all of the enzymes necessary for fermentation of succinate plus ethanol by C. kluyveri have now been demonstrated to exist in this organism and confirms the proposed pathway involving a reduction of succinate via 4-hydroxybutyrate to butyrate. Interestingly, the enzyme is almost identical to the previously isolated 4-hydroxybutyryl-CoA dehydratase from Clostridium aminobutyricum. The dehydratase was revealed as being a homotetramer (m=59 kDa/subunit), containing 2±0.2 mol FAD, 13.6±0.8 mol Fe and 10.8±1.2 mol inorganic sulfur. The enzyme was irreversibly inactivated after exposure to air. Reduction by sodium dithionite also yielded an inactive enzyme which could be reactivated, however, up to 84% by oxidation with potassium hexacyanoferrate(III). The enzyme possesses an intrinsic vinylacetyl-CoA isomerase activity which was also found in 4-hydroxybutyryl-CoA dehydratase from C. aminobutyricum. Moreover, the N-terminal sequences of the dehydratases from both organisms were found to be 63% identical.

Journal ArticleDOI
TL;DR: Root nodule bacteria and Escherichia coli show an adaptive acid tolerance response when grown under mildly acidic conditions and were more tolerant (D values usually 2 to 5-fold higher) than those in exponential phase.
Abstract: Root nodule bacteria and Escherichia coli show an adaptive acid tolerance response when grown under mildly acidic conditions. This is defined in terms of the rate of cell death upon exposure to acid shock at pH 3.0 and expressed in terms of a decimal reduction time, D. The D values varied with the strain and the pH of the culture medium. Early exponential phase cells of three strains of Rhizobium leguminosarum (WU95, 3001 and WSM710) had D values of 1, 6 and 5 min respectively when grown at pH 7.0; and D values of 5, 20 and 12 min respectively when grown at pH 5.0. Exponential phase cells of Rhizobium tropici UMR1899, Bradyrhizobium japonicum USDA110 and peanut Bradyrhizobium sp. NC92 were more tolerant with D values of 31, 35 and 42 min when grown at pH 7.0; and 56, 86 and 68 min when grown at pH 5.0. Cells of E. coli UB1301 in early exponential phase at pH 7.0 had a D value of 16 min, whereas at pH 5.0 it was 76 min. Stationary phase cells of R. leguminosarum and E. coli were more tolerant (D values usually 2 to 5-fold higher) than those in exponential phase. Cells of R. leguminosarum bv. trifolii 3001 or E. coli UB1301 transferred from cultures at pH 7.0 to medium at pH 5.0 grew immediately and induced the acid tolerance response within one generation. This was prevented by the addition of chloramphenicol. Acid-adapted cells of Rhizobium legumininosarum bv. trifolii WU95 and 3001; or E. coli UB1301, M3503 and M3504 were as sensitive to UV light as those grown at neutral pH.

Journal ArticleDOI
TL;DR: It was concluded that two strains of obligately anaerobic, thermophilic spirochetes isolated from cyanobacterial mat samples collected at freshwater hot springs in Oregon and Utah, USA were representatives of a novel species of Spirochaeta, consistent with the suggestion that interactions between cellulolytic bacteria and non-cellulolytic spiroChetes enhance cellulose breakdown in natural environments in which cellulose-containing plant material is biodegraded.
Abstract: Two strains of obligately anaerobic, thermophilic spirochetes were isolated from cyanobacterial mat samples collected at freshwater hot springs in Oregon and Utah, USA. The isolates grew optimally between 48° and 52°C, and did not grow at 25° or 60°C. Both strains fermented various pentoses, hexoses, and disaccharides. Amino acids or cellulose did not serve as fermentable substrates for growth. H2, CO2, acetate, and lactate were end products of d-glucose fermentation. On the basis of physiological characteristics, guanine + cytosine content of DNA, and comparisons of 16S ribosomal RNA sequences, it was concluded that the two isolates were representatives of a novel species of Spirochaeta for which the name Spirochaeta caldaria is proposed. One of the two strains was grown in coculture with a thermophilic cellulolytic bacterium (Clostridium thermocellum) in a medium containing cellulose as the only fermentable substrate. In the coculture cellulose was broken down at a faster rate than in the clostridial monoculture. The results are consistent with the suggestion that interactions between cellulolytic bacteria and non-cellulolytic spirochetes enhance cellulose breakdown in natural environments in which cellulose-containing plant material is biodegraded.

Journal ArticleDOI
TL;DR: It is demonstrated in a denitrifying Pseudomonas strain that phenylphosphate is the first detectable product formed from phenol in whole cells and that subsequent phenylPhosphate consumption parallels 4-hydroxybenzoate formation, consistent with phosphorylation being the first step in anaerobic phenol degradation.
Abstract: Anaerobic phenol degradation has been shown to proceed via carboxylation of phenol to 4-hydroxybenzoate. However, in vitro the carboxylating enzyme was inactive with phenol; only phenylphosphate (phosphoric acid monophenyl ester) was readily carboxylated. We demonstrate in a denitrifying Pseudomonas strain that phenylphosphate is the first detectable product formed from phenol in whole cells and that subsequent phenylphosphate consumption parallels 4-hydroxybenzoate formation. These kinetics are consistent with phosphorylation being the first step in anaerobic phenol degradation. Various cosubstrates failed so far to act as phosphoryl donor for net phosphorylation of phenol in cell extracts. Yet, cells anaerobically grown with phenol contained an enzyme that catalyzed an isotope exchange between [U-14C]phenol and phenylphosphate. This transphosphorylation activity was anaerobically induced by phenol but was stable under aerobic conditions and required Mn2+ and polyethylene glycol. Activity was optimal at pH 5.5 and half-maximal with 0.6 mM Mn2+, 0.2 mM phenylphosphate, and 1 mM phenol. It is proposed that the phenol exchange/transphosphorylation reaction is catalyzed as partial reaction by an inducible phenol phosphorylating enzyme. The isotope exchange demands that a phosphorylated enzyme was formed in the course of the reaction, which might be similar to the phosphotransferase system of sugar transport.

Journal ArticleDOI
TL;DR: Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate, and a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase of significantly different molecular and catalytic properties was synthesized.
Abstract: Methanobacterium thermoautotrophicum (strain Marburg) was found to grow on media supplemented with tungstate rather than with molybdate. The Archaeon then synthesized a tungsten iron-sulfur isoenzyme of formylmethanofuran dehydrogenase. The isoenzyme was purified to apparent homogeneity and shown to be composed of four different subunits of apparent molecular masses 65 kDa, 53 kDa, 31 kDa, and 15 kDa and to contain per mol 0.4 mol tungsten, <0.05 mol molybdenum, 8 mol non-heme iron, 8 mol acid-labile sulfur and molybdopterin guanine dinucleotide. Its molecular and catalytic properties were significantly different from those of the molybdenum isoenzyme characterized previously. The two isoenzymes also differed in their metal specificity: the active molybdenum isoenzyme was only synthesized when molybdenum was available during growth whereas the active tungsten isoenzyme was also generated during growth of the cells on molybdate medium. Under the latter conditions the tungsten isoenzyme was synthesized containing molybdenum rather than tungsten.

Journal ArticleDOI
TL;DR: The aim of this study was to unravel the identity of compatible solutes accumulated by Lactobacillus plantarum subjected to osmotic stress and found that carnitine made the organism more tolerant to sodium chloride.
Abstract: The aim of this study was to unravel the identity of compatible solutes accumulated by Lactobacillus plantarum subjected to osmotic stress. Betaine was accumulated simulataneously with a novel compatible solute identified as carnitine, both present in the complex medium applied in this study. Beef extract provided the main source of carnitine in the medium. Both carnitine and betaine were accumulated to maximum concentrations of 248 and 231 μmol.g dry weight-1, respectively. A defined medium was devised devoid of carnitine. Addition of 0.5 mM carnitine to this medium increased the growth rate from 0.1 h-1 to 0.2 h-1 in media with 0.4 M sodium chloride. Also, carnitine made the organism more tolerant to sodium chloride. Growth occurred even when the sodium chloride concentration was raised from 0.5 M to 1.0 M. Quaternary compounds resembling the structure of carnitine and betaine enhanced the growth yield as well. γ-Butyrobetaine and succinylcholine restored the growth yield up to respectively 91 and 96% compared to non-stressed cells.

Journal ArticleDOI
TL;DR: The variety of products formed using pyruvate as the sole substrate showed the important role of this metabolite in the energy metabolism of H. pylori and the existence of a mixed-acid fermentation pathway in the microorganism.
Abstract: The metabolism of pyruvate by Helicobacter pylori was investigated employing one- and two-dimensional 1H and 13C nuclear magnetic resonance spectroscopy. Generation of pyruvate from l-serine in incubations with whole cell lysates indicated the presence of serine dehydratase activity in the bacterium. Pyruvate was formed also in cell suspensions and lysates from phosphoenol pyruvate. Metabolically competent cells incubated aerobically with pyruvate yielded alanine, lactate, acetate, formate, and succinate. The production of alanine and lactate indicated the presence of alanine transaminase and lactate dehydrogenase activities, respectively. Accumulation of acetate and formate as metabolic products provided evidence for the existence of a mixed-acid fermentation pathway in the microorganism. Formation of succinate suggested the incorporation of the pyruvate carbon skeleton into the Kreb's cycle. Addition of pyruvate to various liquid culture media did not affect bacterial growth or loss of viability. The variety of products formed using pyruvate as the sole substrate showed the important role of this metabolite in the energy metabolism of H. pylori.

Journal ArticleDOI
TL;DR: It is concluded that in T. tenax and P. islandicum organic compounds are completely oxidized toCO2 with sulfur or thiosulfate as electron acceptor and that acetyl-CoA oxidation to CO2 proceeds via the citric acid cycle.
Abstract: The oxidation of organic compounds with elemental sulfur or thiosulfate as electron acceptor was studied in the anaerobic hyperthermophilic archaea Thermoproteus tenax and Pyrobaculum islandicum. T. tenax was grown on either glucose or casamino acids and sulfur; P. islandicum on peptone and either elemental sulfur or thiosulfate as electron acceptor. During exponential growth only CO2 and H2S rather than acetate, alanine, lactate, and succinate were detected as fermentation products of both organisms; the ratio of CO2/H2S formed was 1:2 with elemental sulfur and 1:1 with thiosulfate as electron acceptor. Cell extracts of T. tenax and P. islandicum contained all enzymes of the citric acid cycle in catabolic activities: citrate synthase, aconitase, isocitrate dehydrogenase (NADP+-reducing), oxoglutarate: benzylviologen oxidoreductase, succinyl-CoA synthetase, succinate dehydrogenase, fumarase and malate dehydrogenase (NAD+-reducing). Carbon monoxide dehydrogenase activity was not detected. We conclude that in T. tenax and P. islandicum organic compounds are completely oxidized to CO2 with sulfur or thiosulfate as electron acceptor and that acetyl-CoA oxidation to CO2 proceeds via the citric acid cycle.

Journal ArticleDOI
TL;DR: In this article, the growth of Thiobacillus (T.) intermedius strain K12 and T. versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis.
Abstract: The growth of Thiobacillus (T.) intermedius strain K12 and Thiobacillus versutus strain DSM 582 on thiosulfate and tetrathionate was studied combining on-line measurements of metabolic activity and sulfur compound analysis. Most results indicate that T. intermedius oxidized thiosulfate via tetrathionate to sulfate. Concomittantly, sulfur compound intermediates like triand pentathionate were detectable. The formation is probably the result of highly reactive sulfane monosulfonic acids. The formation of tetrathionate allows the cells to buffer temporarily the proton excretion from sulfuric acid production. With T. versutus intermediate sulfur compounds were not detectable, however, sulfur was detectable. The possibility of a thiosulfate oxidation via dithionate, S2O inf6 sup2- , is discussed. The on-line measurement of metabolic activity by microcalorimetry enabled us to detect that cells of T. intermedius adhere to surfaces and produce a biofilm by a metabolic process whereas those of T. versutus fail to do so. The importance of the finding is discussed.

Journal ArticleDOI
TL;DR: The presence and localization of a reversible hydrogenase in non-N2-fixing cells of the filamentous cyanobacterium Anabaena variabilis were investigated by in vitro activity measurements, native-PAGE/activity stain, SDS-CAGE/Western immunoblots, and immunogold localization.
Abstract: The presence and localization of a reversible hydrogenase in non-N2-fixing cells of the filamentous cyanobacterium Anabaena variabilis were investigated by in vitro activity measurements, native-PAGE/activity stain, SDS-PAGE/Western immunoblots, and immunogold localization. Reversible hydrogenase activity was induced approximately 100-fold by sparging the cell suspensions with a mixture of 99% argon and 1% CO2 for 20–26 h. Native-PAGE/activity stain demonstrated the presence of an in vitro functional enzyme with an apparent molecular mass of 118 kDa. Native-PAGE/Western immunoblots, using polyclonal antisera directed against purified hydrogenase from the purple sulphur bacterium Thiocapsa roseopersicina, detected two native proteins with molecular masses of 118 and 133 kDa, respectively. SDS-PAGE/Western immunoblots confirmed the presence of a single polypeptide with a molecular mass of approximately 40 kDa in both induced and non-induced cells. Immunocytolocalization experiments using ultrathin sections again demonstrated the presence of hydrogenase in both induced and non-induced cells. A higher specific labeling was associated with the thylakoid regions, which, using an image analyzer, was calculated to be approximately 4 x higher per cell area compared to in the centroplasm. It is suggested that anaerobic incubation induces higher reversible hydrogenase activity, regulated mainly at the level of activating (pre)existing form(s) of inactive enzyme(s)/protein(s), maybe in combination with synthesis of additional subunit(s).

Journal ArticleDOI
TL;DR: This minireview will focus on the functional aspects of this kind of systems, describing the mechanisms by which amino acids cross the bacterial membrane in both directions.
Abstract: The plasma membrane of bacterial cells functions as a permeability barrier for most solutes. Except for some small molecules (gases, water), only apolar (hydrophobic) compounds show significant permeability, e.g. tryptophan or glycerol. The translocation of the majority of solutes is catalyzed by carrier proteins, which thus provide a central function indispensable for every living cell. The significance of membrane transport, however, is not simply to supply the cell with certain compounds but also to remove metabolic waste products. In order to understand the metabolic network of the cell, not only the knowledge of the pathways and their regulation, but also detailed information concerning both the uptake of substrates and excretion of products is essential. Amino acids are transport solutes of particular interest for the cell, and this holds for both transport directions, i.e. uptake and excretion. Fig. 1 indicates the essential membrane transfer reactions involved in amino acid metabolism. If externally available, amino acids are taken up by corresponding uptake systems. In general, the major part of the cytosolic amino acids is synthesized by the cell using anabolic pathways via conversion of appropriate substrates which themselves must be taken up. On the other hand, amino acids can be excreted in many bacteria. Finally, if an amino acid is sufficiently membrane-permeable, diffusion may play a role both in the influx and efflux direction. Since the amino acid concentration is in general higher in the cytosol as compared to the medium, this process is normally only relevant in the direction of excretion. A large number of primary sequences of prokaryotic and eukaryotic carriers in general and amino acid transporters in particular are available. This minireview, however, will focus on the functional aspects of this kind of systems, describing the mechanisms by which amino acids cross the bacterial membrane in both directions. Furthermore, attention is concentrated on the possible in-

Journal ArticleDOI
TL;DR: Five strains of obligate anaerobic sulfur-reducing eubacteria that exclusively use acetate as energy and carbon source have been enriched and isolated from anoxic sulfide-containing freshwater mud and are considered as a new species for which the name Desulfuromonas acetexigens is proposed.
Abstract: Five strains of obligate anaerobic sulfur-reducing eubacteria that exclusively use acetate as energy and carbon source have been enriched and isolated from anoxic sulfide-containing freshwater mud. The strains were unable to grow in the presence of 2% NaCl. Morphologically the strains were not uniform, cells were either rod-shaped or elongated ovoid. All strains were flagellated with a single polar to subpolar flagellum. They stained gram-negative. Two of the strains were studied in detail. Malate or fumarate was used alternatively to elemental sulfur as electron acceptor. The capacity to grow on acetate as sole organic substrate and to reduce elemental sulfur or polysulfide to sulfide are traits in common with the genus Desulfuromonas. The strains differ from Desulfuromonas acetoxidans by their freshwater origin, morphology, metabolic specialization and their DNA base ratio. Therefore we consider the new isolates as a new species for which the name Desulfuromonas acetexigens is proposed.

Journal ArticleDOI
TL;DR: From the molar ratios of the products and from enzyme activities in cell-free extracts, it was concluded that glucose derived from glycogen was degraded via the Embden-Meyerhof-Parnas pathway.
Abstract: The cyanobacterium Microcystis PCC7806 fermented endogenously stored glycogen to ethanol, acetate, CO2, and H2 when incubated anaerobically in the dark. The switch from photoautotrophic to fermentative metabolism did not require de novo protein synthesis, and fermentation started immediately after cells had been transferred to dark anoxic conditions. From the molar ratios of the products and from enzyme activities in cell-free extracts, it was concluded that glucose derived from glycogen was degraded via the Embden-Meyerhof-Parnas pathway. In addition, CoA-dependent pyruvate:ferredoxin oxidoreductase, alcohol dehydrogenase, acetate kinase, and hydrogenase were present. The specific activities of these enzymes were sufficiently high to account for the rates of product formation by cell suspensions.