scispace - formally typeset
Search or ask a question

Showing papers in "Critical Reviews in Biotechnology in 2013"


Journal ArticleDOI
TL;DR: This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production, to form a basis for selection of wild type species for a future multi-step process.
Abstract: Green microalgae for several decades have been produced for commercial exploitation, with applications ranging from health food for human consumption, aquaculture and animal feed, to coloring agents, cosmetics and others. Several products from green algae which are used today consist of secondary metabolites that can be extracted from the algal biomass. The best known examples are the carotenoids astaxanthin and β-carotene, which are used as coloring agents and for health-promoting purposes. Many species of green algae are able to produce valuable metabolites for different uses; examples are antioxidants, several different carotenoids, polyunsaturated fatty acids, vitamins, anticancer and antiviral drugs. In many cases, these substances are secondary metabolites that are produced when the algae are exposed to stress conditions linked to nutrient deprivation, light intensity, temperature, salinity and pH. In other cases, the metabolites have been detected in algae grown under optimal conditions, and little is known about optimization of the production of each product, or the effects of stress conditions on their production. Some green algae have shown the ability to produce significant amounts of hydrogen gas during sulfur deprivation, a process which is currently studied extensively worldwide. At the moment, the majority of research in this field has focused on the model organism, Chlamydomonas reinhardtii, but other species of green algae also have this ability. Currently there is little information available regarding the possibility for producing hydrogen and other valuable metabolites in the same process. This study aims to explore which stress conditions are known to induce the production of different valuable products in comparison to stress reactions leading to hydrogen production. Wild type species of green microalgae with known ability to produce high amounts of certain valuable metabolites are listed and linked to species with ability to produce hydrogen during general anaerobic conditions, and during sulfur deprivation. Species used today for commercial purposes are also described. This information is analyzed in order to form a basis for selection of wild type species for a future multi-step process, where hydrogen production from solar energy is combined with the production of valuable metabolites and other commercial uses of the algal biomass.

285 citations


Journal ArticleDOI
TL;DR: The release of draft genome sequence of foxtail millet would be useful to the researchers worldwide in not only discerning the molecular basis of biomass production in biofuel crops and the methods to improve it, but also for the introgression of beneficial agronomically important characteristics in foxtailed millet as well as in related Panicoid bioenergy grasses.
Abstract: Foxtail millet is one of the oldest domesticated diploid C4 Panicoid crops having a comparatively small genome size of approximately 515 Mb, short life cycle, and inbreeding nature. Its two species...

211 citations


Journal ArticleDOI
TL;DR: The present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan.
Abstract: Chitosan, copolymer of glucosamine and N-acetyl glucosamine is mainly derived from chitin, which is present in cell walls of crustaceans and some other microorganisms, such as fungi. Chitosan is emerging as an important biopolymer having a broad range of applications in different fields. On a commercial scale, chitosan is mainly obtained from crustacean shells rather than from the fungal sources. The methods used for extraction of chitosan are laden with many disadvantages. Alternative options of producing chitosan from fungal biomass exist, in fact with superior physico-chemical properties. Researchers around the globe are attempting to commercialize chitosan production and extraction from fungal sources. Chitosan extracted from fungal sources has the potential to completely replace crustacean-derived chitosan. In this context, the present review discusses the potential of fungal biomass resulting from various biotechnological industries or grown on negative/low cost agricultural and industrial wastes and their by-products as an inexpensive source of chitosan. Biologically derived fungal chitosan offers promising advantages over the chitosan obtained from crustacean shells with respect to different physico-chemical attributes. The different aspects of fungal chitosan extraction methods and various parameters having an effect on the yield of chitosan are discussed in detail. This review also deals with essential attributes of chitosan for high value-added applications in different fields.

177 citations


Journal ArticleDOI
TL;DR: Studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype, and signaling network maps of such interactions are needed to design better engineering strategies for improving drought tolerance of important crop species.
Abstract: Economically important crops, such as maize, wheat, rice, barley, and other food crops are affected by even small changes in water potential at important growth stages. Developing a comprehensive understanding of host response to drought requires a global view of the complex mechanisms involved. Research on drought tolerance has generally been conducted using discipline-specific approaches. However, plant stress response is complex and interlinked to a point where discipline-specific approaches do not give a complete global analysis of all the interlinked mechanisms. Systems biology perspective is needed to understand genome-scale networks required for building long-lasting drought resistance. Network maps have been constructed by integrating multiple functional genomics data with both model plants, such as Arabidopsis thaliana, Lotus japonicus, and Medicago truncatula, and various food crops, such as rice and soybean. Useful functional genomics data have been obtained from genome-wide comparative transcriptome and proteome analyses of drought responses from different crops. This integrative approach used by many groups has led to identification of commonly regulated signaling pathways and genes following exposure to drought. Combination of functional genomics and systems biology is very useful for comparative analysis of other food crops and has the ability to develop stable food systems worldwide. In addition, studying desiccation tolerance in resurrection plants will unravel how combination of molecular genetic and metabolic processes interacts to produce a resurrection phenotype. Systems biology-based approaches have helped in understanding how these individual factors and mechanisms (biochemical, molecular, and metabolic) "interact" spatially and temporally. Signaling network maps of such interactions are needed that can be used to design better engineering strategies for improving drought tolerance of important crop species.

172 citations


Journal ArticleDOI
TL;DR: Novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater.
Abstract: Over the last few decades many attempts have been made to use biocatalysts for the biotransformation of emerging contaminants in environmental matrices. Laccase, a multicopper oxidoreductase enzyme, has shown great potential in oxidizing a large number of phenolic and non-phenolic emerging contaminants. However, laccases and more broadly enzymes in their free form are biocatalysts whose applications in solution have many drawbacks rendering them currently unsuitable for large scale use. To circumvent these limitations, the enzyme can be immobilized onto carriers or entrapped within capsules; these two immobilization techniques have the disadvantage of generating a large mass of non-catalytic product. Insolubilization of the free enzymes as cross-linked enzymes (CLEAs) is found to yield a greater volume ratio of biocatalyst while improving the characteristics of the biocatalyst. Ultimately, novel techniques of enzymes insolubilization and stabilization are feasible with the combination of cross-linked enzyme aggregates (combi-CLEAs) and enzyme polymer engineered structures (EPESs) for the elimination of emerging micropollutants in wastewater. In this review, fundamental features of laccases are provided in order to elucidate their catalytic mechanism, followed by different chemical aspects of the immobilization and insolubilization techniques applicable to laccases. Finally, kinetic and reactor design effects for enzymes in relation with the potential applications of laccases as combi-CLEAs and EPESs for the biotransformation of micropollutants in wastewater treatment are discussed.

129 citations


Journal ArticleDOI
TL;DR: In this article, a review of advances and achievements relating to approaches for unravelling the human salivary proteome is presented, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications.
Abstract: Human saliva harbours proteins of clinical relevance and about 30% of blood proteins are also present in saliva. This highlights that saliva can be used for clinical applications just as urine or blood. However, the translation of salivary biomarker discoveries into clinical settings is hampered by the dynamics and complexity of the salivary proteome. This review focuses on the current status of technological developments and achievements relating to approaches for unravelling the human salivary proteome. We discuss the dynamics of the salivary proteome, as well as the importance of sample preparation and processing techniques and their influence on downstream protein applications; post-translational modifications of salivary proteome and protein: protein interactions. In addition, we describe possible enrichment strategies for discerning post-translational modifications of salivary proteins, the potential utility of selected-reaction-monitoring techniques for biomarker discovery and validation, limitations to proteomics and the biomarker challenge and future perspectives. In summary, we provide recommendations for practical saliva sampling, processing and storage conditions to increase the quality of future studies in an emerging field of saliva clinical proteomics. We propose that the advent of technologies allowing sensitive and high throughput proteome-wide analyses, coupled to well-controlled study design, will allow saliva to enter clinical practice as an alternative to blood-based methods due to its simplistic nature of sampling, non-invasiveness, easy of collection and multiple collections by untrained professionals and cost-effective advantages.

120 citations


Journal ArticleDOI
TL;DR: A comprehensive review on microbial keratinases is presented giving an account of chronological progress of research along with the major milestones, and major focus has been on the key characteristics of keratinase, such as substrate specificity, keratin degradation mechanisms, molecular properties, and their role in prion decontamination along with other pharmaceutical applications.
Abstract: Keratinases are special proteases which attack the highly recalcitrant keratin substrates. They stand apart from the conventional proteases due to their broad substrate specificity towards a variety of insoluble keratin rich substrates like feather, wool, nail, hair. Owing to this ability, keratinases find immense applications in various environmental and biotechnological sectors. The current boost in keratinase research has come up with the discovery of the ability of keratinases to address the challenging issue of prion decontamination. Here we present a comprehensive review on microbial keratinases giving an account of chronological progress of research along with the major milestones. Major focus has been on the key characteristics of keratinases, such as substrate specificity, keratin degradation mechanisms, molecular properties, and their role in prion decontamination along with other pharmaceutical applications. We conclude by critically evaluating the present state of the keratinases discussing their commercial status along with future research directions.

117 citations


Journal ArticleDOI
TL;DR: This review covers fundamental and major development of directed evolution techniques, and highlights the advances in mutagenesis, screening and selection methods with examples of enzymes developed by using these approaches.
Abstract: Copyright: 2012. Taylor & Francis Online. Due to copyright restrictions, only the abstract is available. For access to the full text item, please consult the publisher's website. The definitive version of the work is published in Cricital reviews in Biotechnology, Vol 33, No.4 365-378; http://dx.doi.org/10.3109/07388551.2012.716810

105 citations


Journal ArticleDOI
TL;DR: In this article, a single variable optimization method is used to obtain optimum conditions for a lipid-catalyzed process of vegetable oil hydrolysis, where the presence of metal ions has different effects on the activity of different lipases and the effects of additives on the same lipase vary with their types.
Abstract: Lipase (triacylglycerol acylhydrolase) is a unique enzyme which can catalyze various types of reactions such as hydrolysis, esterification, alcoholysis etc. In particular, hydrolysis of vegetable oil with lipase as a catalyst is widely studied. Free lipase, lipase immobilized on suitable support, lipase encapsulated in a reverse micelle and lipase immobilized on a suitable membrane to be used in membrane reactor are the most common ways of employing lipase in oil hydrolysis. Castor oil is a unique vegetable oil as it contains high amounts (90%) of a hydroxy monounsaturated fatty acid named ricinoleic acid. This industrially important acid can be obtained by hydrolysis of castor oil. Different conventional hydrolysis processes have certain disadvantages which can be avoided by a lipase-catalyzed process. The degree of hydrolysis varies widely for different lipases depending on the operating range of process variables such as temperature, pH and enzyme loading. Immobilization of lipase on a suitable support can enhance hydrolysis by suppressing thermal inactivation and estolide formation. The presence of metal ions also affects lipase-catalyzed hydrolysis of castor oil. Even a particular ion has different effects on the activity of different lipases. Hydrophobic organic solvents perform better than hydrophilic solvents during the reaction. Sonication considerably increases hydrolysis in case of lipolase. The effects of additives on the same lipase vary with their types. Nonionic surfactants enhance hydrolysis whereas cationic and anionic surfactants decrease it. A single variable optimization method is used to obtain optimum conditions. In order to eliminate its disadvantages, a statistical optimization method is used in recent studies. Statistical optimization shows that interactions between any two of the following pH, enzyme concentration and buffer concentration become significant in presence of a nonionic surfactant named Span 80.

102 citations


Journal ArticleDOI
TL;DR: It is found that despite the availability of methods and suitable markers for a wide range of crops, there is dearth of simple ways of making both morphological descriptors and molecular markers easy, referable and practical to use although there are ongoing attempts at making this possible.
Abstract: Plant variety and cultivar identification is one of the most important aspects in agricultural systems. The large number of varieties or landraces among crop plants has made it difficult to identify and characterize varieties solely on the basis of morphological characters because they are non stable and originate due to environmental and climatic conditions, and therefore phenotypic plasticity is an outcome of adaptation. To mitigate this, scientists have developed and employed molecular markers, statistical tests and software to identify and characterize the required plant cultivars or varieties for cultivation, breeding programs as well as for cultivar-right-protection. The establishment of genome and transcriptome sequencing projects for many crops has led to generation of a huge wealth of sequence information that could find much use in identification of plants and their varieties. We review the current status of plant variety and cultivar identification, where an attempt has been made to describe the different strategies available for plant identification. We have found that despite the availability of methods and suitable markers for a wide range of crops, there is dearth of simple ways of making both morphological descriptors and molecular markers easy, referable and practical to use although there are ongoing attempts at making this possible. Certain limitations present a number of challenges for the development and utilization of modern scientific methods in variety or cultivar identification in many important crops.

97 citations


Journal ArticleDOI
TL;DR: This study has made an effort to review the work on the presence of bisphenol A and other related endocrine disrupting compounds in the environment and their impact on the life of living organisms including human beings.
Abstract: Bisphenol A is predominantly used as an intermediate in the production of polycarbonate plastics and epoxy resins. Traces of bisphenol A released into the environment can reach into the wastewater and soil via application of sewage sludge from wastewater treatment systems that receive water containing bisphenol A, or from leachate from uncontrolled landfills. In this study we have made an effort to review the work on the presence of bisphenol A and other related endocrine disrupting compounds in the environment and their impact on the life of living organisms including human beings. Bisphenol A has several implications on the health of human beings as well it can also affect the growth of plants and animals. Number of physicochemical methods such as adsorption, membrane based filtration, ozonation, fenton, electrochemical and photochemical degradation has been used for the removal of bisphenol A. However, these methods have some inherent limitations and therefore cannot be used for large scale treatment of such pollutants. The alternative procedures have attracted the attention of environmental scientists. Biological methods are looking quite promising and these procedures are helpful in the complete degradation of bisphenol A and related compounds. Several bacterial, fungal, and algal strains and mixed cultures have successfully been employed for the degradation of bisphenol A. Recently, enzymatic methods have attracted the attention of the environmentalists for the treatment of bisphenol A and other endocrine disrupting compounds. Numerous types of oxidoreductases; laccases, tyrosinases, manganese peroxidase, lignin peroxidase, polyphenol oxidases, horseradish peroxidase and bitter gourd peroxidase have exhibited their potential for the remediation of such types of compounds. The cytochrome P 450 monooxygenases and hemoglobin have also participated in the degradation of bisphenol A and other related endocrine disrupting compounds. Various redox mediators, surfactants and additives have also enhanced enzymatic oxidation of bisphenol A and other related endocrine disrupting compounds.

Journal ArticleDOI
TL;DR: The authors used ACCase amino acid sequence comparisons to show that green and red algae, with the exception of the green algal class Prasinophyceae, contain heteromeric ACCase in their plastids, which are of primary symbiotic origin and surrounded by two envelope membranes.
Abstract: Lipids from microalgae have become an important commodity in the last 20 years, biodiesel and supplementing human diets with ω-3 fatty acids are just two of the many applications. Acetyl-CoA carboxylase (ACCase) is a key enzyme in the lipid synthesis pathway. In general, ACCases consist of four functional domains: the biotin carboxylase (BC), the biotin carboxyl binding protein (BCCP), and α-and β-carboxyltransferases (α-and β-CT). In algae, like in plants, lipid synthesis is another function of the chloroplast. Despite being well researched in plants and animals, there is a distinct lack of information about this enzyme in the taxonomically diverse algae. In plastid-containing organisms, ACCases are present in the cytosol and the plastid (chloroplasts) and two different forms exist, the heteromeric (prokaryotic) and homomeric (eukaryotic) form. Despite recognition of the existence of the two ACCase forms, generalized published statements still list the heteromeric form as the one present in algal plastids. In this study, the authors show this is not the case for all algae. The presence of heteromeric or homomeric ACCase is dependent on the origin of plastid. The authors used ACCase amino acid sequence comparisons to show that green (Chlorophyta) and red (Rhodophyta) algae, with the exception of the green algal class Prasinophyceae, contain heteromeric ACCase in their plastids, which are of primary symbiotic origin and surrounded by two envelope membranes. In contrast, algal plastids surrounded by three to four membranes were derived through secondary endosymbiosis (Heterokontophyta and Haptophyta), as well as apicoplast containing Apicomplexa, contain homomeric ACCase in their plastids. Distinctive differences in the substrate binding regions of heteromeric and homomeric α-CT and β-CT were discovered, which can be used to distinguish between the two ACCase types. Furthermore, the acetyl-CoA binding region of homomeric α-CT can be used to distinguish between cytosolic and plastidial ACCase. The information provided here will be of fundamental importance in ACCase expression and activity research to unravel impacts of environmental and physicochemical parameters on lipid content and productivity.

Journal ArticleDOI
TL;DR: In the present paper the existing experimental methods that have been proposed since the 1980s are reviewed and critically discussed with respect to their usefulness and applicability to develop numerical modelling approaches.
Abstract: In recent years, the advances in microbiology show that biofilms are structurally complex, dynamic and adaptable systems including attributes of multicellular organisms and miscellaneous ecosystems. One may distinguish between beneficial and harmful biofilms appearing in daily life as well as various industrial processes. In order to advance the growth of the former or prevent the latter type of biofilm, a detailed understanding of its properties is indispensable. Besides microbiological aspects, this concerns the determination of mechanical characteristics, which provides the basis for material modelling. In the present paper the existing experimental methods that have been proposed since the 1980s are reviewed and critically discussed with respect to their usefulness and applicability to develop numerical modelling approaches.

Journal ArticleDOI
TL;DR: This review discusses both conventional and advanced MSNs synthesis methods, including their applications for drug delivery, gatekeepers, and biosensors, and the research progress in biocompatibility, cytotoxicity, and internalization mechanisms is reported.
Abstract: Mesoporous silica nanoparticles (MSNs) are a versatile drug delivery system that can be used for loading of different guest molecules such as peptides, proteins, anticancer agents, and genetic material. MSNs are considered promising drug carriers due to their tuneable particle size, pore structure, and surface functionalization. Thus, MSNs provide opportunities for their effective application in a wide variety of fields. In the current review, we discuss both conventional and advanced MSNs synthesis methods, including their applications for drug delivery, gatekeepers, and biosensors. In addition, the research progress in biocompatibility, cytotoxicity, and internalization mechanisms is reported.

Journal ArticleDOI
TL;DR: More detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.
Abstract: The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.

Journal ArticleDOI
TL;DR: In this review, recent progress concerning the possible role of ASN in whole-plant-based down-regulation of symbiotic N2 fixation will be reviewed.
Abstract: Symbiotic nitrogen fixation is tightly regulated by a range of fine processes at the nodule level, over which the host plant has overall control through the whole life of the plant. The operation of this control at the nodule level is not yet fully understood, but greater knowledge will ultimately lead to a better improvement of N2 fixation through the use of crop legumes and genetic engineering of crop plants for higher performance. It has been suggested that, nodule responses to the nutritional complexity of the rhizosphere environment involve a great deal of coordination of sensing and signal transduction. This regulation can be achieved through several mechanisms, including changes in carbon metabolism, oxygen supply and/or overproduction of reactive oxygen and nitrogen species. Recently, the cycling of amino acids observed between the plant and bacteroid fractions suggests a new and important regulatory mechanism involved in nodule responses. Most of the recent transcriptional findings are consistent with the earlier biochemical and physiological reports. Current research revealed unique advances for nodule metabolism, especially on the regulation of asparagine synthetase gene expression and the control of asparagine (ASN) to N2 fixing activity. A large amount of ASN is found accumulating in the root nodules of the symbiotic plants under restricted environments, such as drought, salinity and nutrient deficiency. Exceptionally, ASN phloem feeding has resulted in an increased concentration of the ASN amide in nodules followed by a remarkable decrease in nodule activity. In this review, recent progress concerning the possible role of ASN in whole-plant-based down-regulation of symbiotic N2 fixation will be reviewed.

Journal ArticleDOI
TL;DR: This review provides comprehensive information about the different biotechnological techniques employed in the production of prebiotics and their potential applications in different areas.
Abstract: Worldwide interest in prebiotics have been increasing extensively both as food ingredients and pharmacological supplements, since they have beneficial properties for human health. Prebiotics not only stimulate the growth of healthy bacteria such as bifidobacteria and lactobacilli in the gut but also increase the resistance towards pathogens. In addition to this, they also act as dietary fiber, an energy source for intestinal cells after converting to short-chain fatty acids, a stimulator of immune systems, sugar replacer etc. Moreover, due to heat resistant properties, they are able to maintain their intact form during the baking process and allow them to be incorporated into every day food products. Thus, they can be interesting and useful ingredients in the development of novel functional foods. This review provides comprehensive information about the different biotechnological techniques employed in the production of prebiotics and their potential applications in different areas.

Journal ArticleDOI
TL;DR: Rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤500 mg acetic acid L−1 before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.
Abstract: The thermophilic anaerobic digestion (TAD) of sewage sludge has often been found to be less stable than mesophilic treatment. In comparison to mesophilic digesters, thermophilic reactors treating sludge are generally characterized by relatively high concentrations of volatile fatty acids (VFA) in the effluent along with poor effluent quality, indicating a lower level of process stability. However, reviewing the literature related to the procedure for obtaining a thermophilic inoculum, it seems that most of the problems associated with the instability and the accumulation of organic intermediates are the result of the manner in which the thermophilic sludge has been obtained. In this paper, the different options available for obtaining an anaerobic digester operating at thermophilic temperature (55°C) have been reviewed. In this light, rapid heating to the target temperature followed by the development of thermophilic microorganisms, which can be determined by VFA dropping to ≤ 500 mg acetic acid L(-1) before increasing the organic loading rate (OLR), has been determined the most suitable means of establishing TAD.

Journal ArticleDOI
TL;DR: This review focuses on the versatility of Ca2+ sensors and decoders in the model plant Arabidopsis as well as plants of economical importance and throws light on the possible mechanism of action of these important components.
Abstract: Plants are often subjected to various environmental stresses that lead to deleterious effects on growth, production, sustainability, etc. The information of the incoming stress is read by the plants through the mechanism of signal transduction. The plant Ca2+ serves as secondary messenger during adaptations to stressful conditions and developmental processes. A plethora of Ca2+ sensors and decoders functions to bring about these changes. The cellular concentrations of Ca2+, their subcellular localization, and the specific interaction affinities of Ca2+ decoder proteins all work together to make this process a complex but synchronized signaling network. In this review, we focus on the versatility of these sensors and decoders in the model plant Arabidopsis as well as plants of economical importance. Here, we have also thrown light on the possible mechanism of action of these important components.

Journal ArticleDOI
TL;DR: This article has reviewed the literature published in the area of mathematical modeling of the ABE fermentation and tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation and other additional features.
Abstract: Among different liquid biofuels that have emerged in the recent past, biobutanol produced via fermentation processes is of special interest due to very similar properties to that of gasoline. For an effective design, scale-up, and optimization of the acetone–butanol–ethanol (ABE) fermentation process, it is necessary to have insight into the micro- and macro-mechanisms of the process. The mathematical models for ABE fermentation are efficient tools for this purpose, which have evolved from simple stoichiometric fermentation equations in the 1980s to the recent sophisticated and elaborate kinetic models based on metabolic pathways. In this article, we have reviewed the literature published in the area of mathematical modeling of the ABE fermentation. We have tried to present an analysis of these models in terms of their potency in describing the overall physiology of the process, design features, mode of operation along with comparison and validation with experimental results. In addition, we have also hig...

Journal ArticleDOI
TL;DR: This review presents a compilation of engineering challenges related to microalgae as a source of biodiesel, with emphasis on cell wall composition, as it represents a barrier for fatty acid extraction and lipid droplets.
Abstract: In recent years, the not too distant exhaustion of fossil fuels is becoming apparent. Apart from this, the combustion of fossil fuels leads to environmental concerns, the emission of greenhouse gases and issues with global warming and health problems. Production of biodiesel from microalgae may represent an attractive solution to the above mentioned problems, and can offer a renewable source of fuel with fewer pollutants. This review presents a compilation of engineering challenges related to microalgae as a source of biodiesel. Advantages and current limitations for biodiesel production are discussed; some aspects of algae cells biology, with emphasis on cell wall composition, as it represents a barrier for fatty acid extraction and lipid droplets are also presented. In addition, recent advances in the different stages of the manufacturing process are included, starting from the strain selection and finishing in the processing of fatty acids into biodiesel.

Journal ArticleDOI
TL;DR: Recombinant Lectins are developing into valuable biosynthetic tools for biomedical research and will aid in unraveling the complex biological mechanisms of glycan-interactions, bringing recombinant lectins to the forefront of glycobiology.
Abstract: Lectins are a heterogeneous group of proteins found in plants, animals and microorganisms, which possess at least one non-catalytic domain that binds reversibly to specific mono- or oligosaccharides. The range of lectins and respective biological activities is unsurprising given the immense diversity and complexity of glycan structures and the multiple modes of interaction with proteins. Recombinant DNA technology has been traditionally used for cloning and characterizing newly discovered lectins. It has also been employed as a means of producing pure and sequence-defined lectins for different biotechnological applications. This review focuses on the production of recombinant lectins in heterologous organisms, and highlighting the Escherichia coli and Pichia pastoris expression systems, which are the most employed. The choice of expression host depends on the lectin. Non-glycosylated recombinant lectins are produced in E. coli and post-translational modified recombinant lectins are produced in eukaryotic ...

Journal ArticleDOI
TL;DR: This review covers important aspects of sea buckthorn research, such as heritable and environmentally induced variation in biochemical compounds, causes and effects of the devastating dried-shrink disease, susceptibility to insect pests, methods for conventional breeding, and the utilization of DNA markers for taxonomical and population genetic analyses.
Abstract: Sea buckthorn is a berry crop with multiple uses. The berries are highly appreciated for their unique taste but are also very rich in bioactive compounds with powerful nutritional and medicinal values. In addition, the plants grow well under adverse conditions, and are often used to fight soil erosion. Utilization of sea buckthorn has therefore increased around the world but serious problems have, nevertheless, been encountered due to drought, salinity, diseases and insect pests. This review covers important aspects of sea buckthorn research, such as heritable and environmentally induced variation in biochemical compounds, causes and effects of the devastating dried-shrink disease, susceptibility to insect pests, methods for conventional breeding, and the utilization of DNA markers for taxonomical and population genetic analyses, and for investigating the inheritance of quality and resistance traits. We also present possibilities to implement innovative biotechnological breeding methods, especially metabolite profiling and MAS/GRC-based markers, for fast and efficient development of elite genotypes with specific nutritional- and health-related bioactive compounds and strong resistance to biotic and abiotic stress.

Journal ArticleDOI
TL;DR: This review will analyze the recent literature concerning technical aspects related to the isolation, the expression as multivalent molecules, and the therapeutic applications of binders able to interfere with antigen functional domains.
Abstract: The availability of binders to different functional domains of the same protein or to physiologically co-operating proteins allows for the simultaneous inhibition of independent downstream signaling pathways. This multi-target approach represents a promising therapeutic strategy, as demonstrated in the case of the synergistic effect of anti-Her2 treatment based on the combined use of the trastuzumab and pertuzumab monoclonal antibodies that induce cellular cytotoxicity and impair the receptor dimerization, respectively. Therefore, a reliable selection method for the recovery of epitope-specific antibodies is highly needed. Animal immunization with short peptides resembling the epitope sequence for raising conventional antibodies represents an alternative. Panning phage displayed libraries of recombinant antibodies such as scFvs and nanobodies or of other peptide collections is another option. Although recombinant antibodies can provide the same specificity as conventional antibodies, they offer at least two further advantages: i) the protocols for the selection of epitope-specific antibodies can be rationally designed, and ii) their expression as multivalent, bispecific and biparatopic molecules is feasible. This review will analyze the recent literature concerning technical aspects related to the isolation, the expression as multivalent molecules, and the therapeutic applications of binders able to interfere with antigen functional domains. The term binder will be preferred when possible to include those molecules, such as peptides or affibodies, with at least some proven practical uses.