scispace - formally typeset
Search or ask a question
JournalISSN: 1674-5507

Environmental Epigenetics 

University of Oxford
About: Environmental Epigenetics is an academic journal published by University of Oxford. The journal publishes majorly in the area(s): DNA methylation & Epigenetics. It has an ISSN identifier of 1674-5507. It is also open access. Over the lifetime, 137 publications have been published receiving 3409 citations. The journal is also known as: Dong wu xue bao.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.
Abstract: Ancestral environmental exposures such as toxicants, abnormal nutrition or stress can promote the epigenetic transgenerational inheritance of disease and phenotypic variation. These environmental factors induce the epigenetic reprogramming of the germline (sperm and egg). The germline epimutations can in turn increase disease susceptibility of subsequent generations of the exposed ancestors. A variety of environmental factors, species and exposure specificity of this induced epigenetic transgenerational inheritance of disease is discussed with a consideration of generational toxicology. The molecular mechanisms and processes involved in the ability of these inherited epimutations to increase disease susceptibility are discussed. In addition to altered disease susceptibility, the potential impact of the epigenetic inheritance on phenotypic variation and evolution is considered. Observations suggest environmentally induced epigenetic transgenerational inheritance of disease is a critical aspect of disease etiology, toxicology and evolution that needs to be considered.

261 citations

Journal ArticleDOI
TL;DR: Developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective.
Abstract: Environmental factors can induce epigenetic alterations in the germ cells that can potentially be transmitted transgenerationally. This non-genetic form of inheritance is termed epigenetic transgenerational inheritance and has been shown in a variety of species including plants, flies, worms, fish, rodents, pigs, and humans. This phenomenon operates during specific critical windows of exposure, linked to the developmental biology of the germ cells (sperm and eggs). Therefore, concepts of the developmental origins of transgenerational inheritance of phenotypic variation and subsequent disease risk need to include epigenetic processes affecting the developmental biology of the germ cell. These developmental impacts on epigenetic transgenerational inheritance, in contrast to multigenerational exposures, are the focus of this Perspective.

138 citations

Journal ArticleDOI
TL;DR: Investigation of the vinclozolin-induced concurrent alterations of a number of different epigenetic factors, including DNA methylation, ncRNA, and histone retention in rat sperm shows that the three different types of epimutations are involved and integrated in the mediation of the epigenetic transgenerational inheritance phenomenon.
Abstract: Epigenetic transgenerational inheritance of disease and phenotypic variation can be induced by several toxicants, such as vinclozolin. This phenomenon can involve DNA methylation, non-coding RNA (ncRNA) and histone retention, and/or modification in the germline (e.g. sperm). These different epigenetic marks are called epimutations and can transmit in part the transgenerational phenotypes. This study was designed to investigate the vinclozolin-induced concurrent alterations of a number of different epigenetic factors, including DNA methylation, ncRNA, and histone retention in rat sperm. Gestating females (F0 generation) were exposed transiently to vinclozolin during fetal gonadal development. The directly exposed F1 generation fetus, the directly exposed germline within the fetus that will generate the F2 generation, and the transgenerational F3 generation sperm were studied. DNA methylation and ncRNA were altered in each generation rat sperm with the direct exposure F1 and F2 generations being distinct from the F3 generation epimutations. Interestingly, an increased number of differential histone retention sites were found in the F3 generation vinclozolin sperm, but not in the F1 or F2 generations. All three different epimutation types were affected in the vinclozolin lineage transgenerational sperm (F3 generation). The direct exposure generations (F1 and F2) epigenetic alterations were distinct from the transgenerational sperm epimutations. The genomic features and gene pathways associated with the epimutations were investigated to help elucidate the integration of these different epigenetic processes. Our results show that the three different types of epimutations are involved and integrated in the mediation of the epigenetic transgenerational inheritance phenomenon.

120 citations

Journal ArticleDOI
TL;DR: A better understanding of pre-conceptional origins of disease through the paternal exposome will be informative to the field of transgenerational epigenetics and will ultimately help instruct and guide public health policies in the future.
Abstract: The growing field of 'Developmental Origin of Health and Disease' (DOHaD) generally reflects environmental influences from mother to child. The importance of maternal lifestyle, diet and other environmental exposures before and during gestation period is well recognized. However, few epidemiological designs explore potential influences from the paternal environment on offspring health. This is surprising given that numerous animal models have provided evidence that the paternal environment plays a role in a non-genetic inheritance of pre-conceptional exposures through the male germ line. Recent findings in humans suggest that the epigenome of sperm cells can indeed be affected by paternal exposures. Defects in epigenetic sperm mechanisms may result in persistent modifications, affecting male fertility or offspring health status. We addressed this issue at the LATSIS Symposium 'Transgenerational Epigenetic Inheritance: Impact for Biology and Society', in Zurich, 28-30 August 2017, and here provide important arguments why environmental and lifestyle-related exposures in young men should be studied. The Paternal Origins of Health and Disease (POHaD) paradigm was introduced to stress the need for more research on the role of the father in the transmission of acquired environmental messages from his environment to his offspring. A better understanding of pre-conceptional origins of disease through the paternal exposome will be informative to the field of transgenerational epigenetics and will ultimately help instruct and guide public health policies in the future.

107 citations

Journal ArticleDOI
TL;DR: Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.
Abstract: There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.

96 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
20233
202112
202020
201921
201825
201719