scispace - formally typeset
Search or ask a question
JournalISSN: 1069-4730

Journal of Engineering Education 

American Society for Engineering Education
About: Journal of Engineering Education is an academic journal published by American Society for Engineering Education. The journal publishes majorly in the area(s): Engineering education & Curriculum. It has an ISSN identifier of 1069-4730. Over the lifetime, 1576 publications have been published receiving 87207 citations. The journal is also known as: JEE.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors examine the evidence for the effectiveness of active learning and define the common forms of activelearning most relevant for engineering faculty and critically examine the core element of each method, finding broad but uneven support for the core elements of active, collaborative, cooperative and problem-based learning.
Abstract: This study examines the evidence for the effectiveness of active learning. It defines the common forms of active learning most relevant for engineering faculty and critically examines the core element of each method. It is found that there is broad but uneven support for the core elements of active, collaborative, cooperative and problem-based learning.

5,301 citations

Journal ArticleDOI
TL;DR: In this article, the purpose of engineering education is to train engineers who can design, and that design thinking is difficult to learn and difficult to teach, and the most popular pedagogical model for teaching design is Project-Based Learning (PBL).
Abstract: This paper is based on the premises that the purpose of engineering education is to graduate engineers who can design, and that design thinking is complex. The paper begins by briefly reviewing the history and role of design in the engineering curriculum. Several dimensions of design thinking are then detailed, explaining why design is hard to learn and harder still to teach, and outlining the research available on how well design thinking skills are learned. The currently most-favored pedagogical model for teaching design, project-based learning (PBL), is explored next, along with available assessment data on its success. Two contexts for PBL are emphasized: first-year cornerstone courses and globally dispersed PBL courses. Finally, the paper lists some of the open research questions that must be answered to identify the best pedagogical practices of improving design learning, after which it closes by making recommendations for research aimed at enhancing design learning.

2,159 citations

Journal ArticleDOI
TL;DR: In this article, three categories of diversity that have been shown to have important implications for teaching and learning are differences in students' learning styles (characteristic ways of taking in and processing information), approaches to learning (surface, deep, and strategic), and intellectual development levels (attitudes about the nature of knowledge and how it should be acquired and evaluated).
Abstract: Students have different levels of motivation, different attitudes about teaching and learning, and different responses to specific classroom environments and instructional practices. The more thoroughly instructors understand the differences, the better chance they have of meeting the diverse learning needs of all of their students. Three categories of diversity that have been shown to have important implications for teaching and learning are differences in students' learning styles (characteristic ways of taking in and processing information), approaches to learning (surface, deep, and strategic), and intellectual development levels (attitudes about the nature of knowledge and how it should be acquired and evaluated). This article reviews models that have been developed for each of these categories, outlines their pedagogical implications, and suggests areas for further study.

1,587 citations

Journal ArticleDOI
TL;DR: Several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-based Learning, case-based teaching, discovery learning, and just-in-time teaching, are reviewed in this paper.
Abstract: Traditional engineering instruction is deductive, beginning with theories and progressing to the applications of those theories. Alternative teaching approaches are more inductive. Topics are introduced by presenting specific observations, case studies or problems, and theories are taught or the students are helped to discover them only after the need to know them has been established. This study reviews several of the most commonly used inductive teaching methods, including inquiry learning, problem-based learning, project-based learning, case-based teaching, discovery learning, and just-in-time teaching. The paper defines each method, highlights commonalities and specific differences, and reviews research on the effectiveness of the methods. While the strength of the evidence varies from one method to another, inductive methods are consistently found to be at least equal to, and in general more effective than, traditional deductive methods for achieving a broad range of learning outcomes.

1,436 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on classroom-based pedagogies of engagement, particularly cooperative and problem-based learning, and present a brief history, theoretical roots, research support, summary of practices, and suggestions for redesigning engineering classes and programs to include more student engagement.
Abstract: Educators, researchers, and policy makers have advocated student involvement for some time as an essential aspect of meaningful learning. In the past twenty years engineering educators have implemented several means of better engaging their undergraduate students, including active and cooperative learning, learning communities, service learning, cooperative education, inquiry and problem-based learning, and team projects. This paper focuses on classroom-based pedagogies of engagement, particularly cooperative and problem-based learning. It includes a brief history, theoretical roots, research support, summary of practices, and suggestions for redesigning engineering classes and programs to include more student engagement. The paper also lays out the research ahead for advancing pedagogies aimed at more fully enhancing students’ involvement in their learning.

1,342 citations

Performance
Metrics
No. of papers from the Journal in previous years
YearPapers
202347
202253
202159
202046
201932
201837