scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Environmental Sciences-china in 2018"


Journal ArticleDOI
TL;DR: The present work provides not only a feasible and promising approach for UTLs utilization but also a potential adsorbent material for removing high concentrations of CIP from aqueous solutions.
Abstract: In this study, used tea leaves (UTLs) were pyrolyzed to obtain used tea-leaf biochar (UTC), and then the UTC was used as an adsorbent to remove ciprofloxacin (CIP) from aqueous solutions. Batch experiments were conducted to investigate the CIP adsorption performance and mechanism. The results showed that the CIP-adsorbing ability first increased and then declined as the UTC pyrolysis temperature increased. The UTC obtained at 450°C presented excellent CIP-absorbing ability at pH6 and 40°C. The maximum monolayer adsorption capacity was 238.10mg/g based on the Langmuir isotherm model. The pseudo-second-order kinetic equation agreed well with the CIP adsorption process, which was controlled by both external boundary layer diffusion and intra-particle diffusion. The characterization analysis revealed that the OH groups, CC bonds of aromatic rings, CH groups in aromatic rings and phenolic CO bonds play vital roles in the CIP adsorption process, and that the NC, NO, OCO and COH groups of UTC were consumed in large quantities. π-π interactions, hydrogen bonding and electrostatic attraction are inferred as the main adsorption mechanisms. The present work provides not only a feasible and promising approach for UTLs utilization but also a potential adsorbent material for removing high concentrations of CIP from aqueous solutions.

130 citations


Journal ArticleDOI
TL;DR: PM2.5 in the atmospheric monitoring stations in Isfahan city, Iran, in different seasons between March 2014 and March 2015 and their source identification using principle component analysis (PCA) illustrated that the most important sources of HMs originated from fossil fuel combustion, abrasion of vehicle tires, industrial activities and dust storms.
Abstract: The presence of heavy metals (HMs) in particulate matters (PMs) particularly fine particles such as PM2.5 poses potential risk to the health of human being. The purpose of this study was to analyze the contents of HMs in PM2.5 in the atmospheric monitoring stations in Isfahan city, Iran, in different seasons between March 2014 and March 2015 and their source identification using principle component analysis (PCA). The samples of PM2.5 were taken using a high volume sampler in 7 monitoring stations located throughout the city and industrial zones since March 2014 to March 2015. The HMs content of the samples was measured using ICP-MS. The results showed that the concentrations of As, Cd and Ni were in a range of 23–36, 1–12, and 5–76 ng/m3 at all the stations which exceeded the US-EPA standards. Furthermore, the concentrations of Cr and Cu reached to 153 and 167 ng/m3 in some stations which were also higher than the standard levels. Depending on the potential sources of HMs, their concentration in PM2.5 through the various seasons was different. PCA illustrated that the different potential sources of HMs in the atmosphere, showing that the most important sources of HMs originated from fossil fuel combustion, abrasion of vehicle tires, industrial activities (e.g., iron and steel industries) and dust storms. Management and control of air pollution of industrial plants and vehicles are suggested for decreasing the risk of the HMs in the region.

109 citations


Journal ArticleDOI
TL;DR: The results showed that the two-dimensional structure of GO could provide a skeleton support for Fe0, thus overcoming the bottleneck of aggregation for nZVI, and would form a ferric-carbon micro-electrolysis system in Cr( VI)-contaminated aquifers, enhancing and accelerating electron transfer, exhibiting high rate and capacity for Cr(VI) removal.
Abstract: Nanoscale zero-valent iron (nZVI) assembled on graphene oxide (GO) (rGO-nZVI) composites were synthesized by reduction of GO and ferrous ions with potassium borohydride, for use in Cr(VI) removal from aqueous solution. The results showed that the two-dimensional structure of GO could provide a skeleton support for Fe0, thus overcoming the bottleneck of aggregation for nZVI. Also, rGO-nZVI would form a ferric-carbon micro-electrolysis system in Cr(VI)-contaminated aquifers, enhancing and accelerating electron transfer, exhibiting high rate and capacity for Cr(VI) removal. The optimum dosage of the applied rGO-nZVI was linearly correlated with the initial Cr(VI) concentration. Characterization of rGO-nZVI before and after reaction with Cr(VI) revealed the process of Cr(VI) removal: rGO-nZVI firstly transferred electrons from Fe0 cores via their Fe(II)/Fe(III) shells to the GO sheet; there, negatively charged Cr(VI) received electrons and changed into positively charged Cr(III), which was adsorbed by the negatively charged GO sheet, avoiding the capping and passivating of nZVI. rGO-nZVI formed a good electrically conductive network, and thus had long-term electron releasing properties, which was important for groundwater remediation.

90 citations


Journal ArticleDOI
TL;DR: Investigation of the photoc atalytic degradation of lindane under UV-vis irradiation showed that Zn@ZnO CS nanocomposites exhibit higher photocatalytic activity than the other prepared samples.
Abstract: To achieve enhanced photocatalytic activity for the degradation of lindane, we prepared metal–semiconductor composite nanoparticles (NPs). Zn@ZnO core–shell (CS) nanocomposites, calcined ZnO, and Ag-doped ZnO (ZnO/Ag) nanostructures were prepared using pulsed laser ablation in liquid, calcination, and photodeposition methods, respectively, without using surfactants or catalysts. The as-prepared catalysts were characterized by using X-ray diffraction (XRD), field-emission scanning electron microscopy, high-resolution transmission electron microscopy, ultraviolet–visible (UV–vis) spectroscopy, and photoluminescence spectroscopy. In addition, elemental analysis was performed by energy dispersive X-ray spectroscopy. The obtained XRD and morphology results indicated good dispersion of Zn and Ag NPs on the surface of the ZnO nanostructures. Investigation of the photocatalytic degradation of lindane under UV–vis irradiation showed that Zn@ZnO CS nanocomposites exhibit higher photocatalytic activity than the other prepared samples. The maximum degradation rate of lindane was 99.5% in 40 min using Zn@ZnO CS nanocomposites. The radical trapping experiments verified that the hydroxyl radical (·OH) was the main reactive species for the degradation of lindane.

83 citations


Journal ArticleDOI
TL;DR: It was showed that a slight lesion in DNA was detected even at high doses of UV and chlorine treatments, and the mRNA involved in the DNA damage repair function can be a potential indicator of bacterial viability.
Abstract: Traditional culture methods may underestimate the tolerance of microorganisms to disinfectants because of the existence of viable but nonculturable or sublethally injured cells after disinfection. The selection of a strict method is crucial for the evaluation of disinfection performance. The actions of 2 typical disinfectants - ultraviolet (UV) and chlorine - on the fecal indicator Escherichia coli were investigated by the detection of culturability, membrane permeability, metabolic activity, deoxyribonucleic acid (DNA), and messenger ribonucleic acid (mRNA). During UV disinfection, the irreversible damages in the cell membrane and cellular adenosine triphosphate (ATP) were negligible at low UV doses ( 5mg/L) treatments. The decay of mRNA was more rapid than that of DNA. The degradation level of mRNA depended on the choice of target genes. After exposure to 50mJ/cm2 UV dose or 5mg/L chlorine for 30min, the DNA damage repair function (RecA mRNA) was inhibited. The mRNA involved in the DNA damage repair function can be a potential indicator of bacterial viability.

77 citations


Journal ArticleDOI
TL;DR: Even very low concentrations of AgNP caused disadvantages for the microbial soil community, especially for nitrogen cycling, and the results confirmed the risks of releasing AgNP into the environment.
Abstract: The increasing production and use of engineered silver nanoparticles (AgNP) in industry and private households are leading to increased concentrations of AgNP in the environment. An ecological risk assessment of AgNP is needed, but it requires understanding the long term effects of environmentally relevant concentrations of AgNP on the soil microbiome. Hence, the aim of this study was to reveal the long-term effects of AgNP on soil microorganisms. The study was conducted as a laboratory incubation experiment over a period of one year using a loamy soil and AgNP concentrations ranging from 0.01 to 1 mg AgNP/kg soil. The short term effects of AgNP were, in general, limited. However, after one year of exposure to 0.01 mg AgNP/kg, there were significant negative effects on soil microbial biomass (quantified by extractable DNA; p = 0.000) and bacterial ammonia oxidizers (quantified by amoA gene copy numbers; p = 0.009). Furthermore, the tested AgNP concentrations significantly decreased the soil microbial biomass, the leucine aminopeptidase activity (quantified by substrate turnover; p = 0.014), and the abundance of nitrogen fixing microorganisms (quantified by nifH gene copy numbers; p = 0.001). The results of the positive control with AgNO3 revealed predominantly stronger effects due to Ag+ ion release. Thus, the increasing toxicity of AgNP during the test period may reflect the long-term release of Ag+ ions. Nevertheless, even very low concentrations of AgNP caused disadvantages for the microbial soil community, especially for nitrogen cycling, and our results confirmed the risks of releasing AgNP into the environment.

75 citations


Journal ArticleDOI
TL;DR: In this paper, a reduced graphene oxide/TiO2 was synthesized through a hydrothermal method using titanium tetrabutoxide and graphene oxide as precursors, and was used for the degradation of low concentration formaldehyde in indoor air under visible light illumination.
Abstract: Due to the low concentration of indoor air contaminants, photocatalytic technology shows low efficiency for indoor air purification. The application of TiO2 for photocatalytic removal of formaldehyde is limited, because TiO2 can only absorb ultraviolet (UV) light. Immobilization of TiO2 nanoparticles on the surface of graphene can improve the visible light photocatalytic activity and the adsorption capacity. In this study, rGO (reduced graphene oxide)/TiO2 was synthesized through a hydrothermal method using titanium tetrabutoxide and graphene oxide as precursors, and was used for the degradation of low concentration formaldehyde in indoor air under visible light illumination. Characterization of the crystalline structure and morphology of rGO/TiO2 revealed that most GO was reduced to rGO during the hydrothermal treatment, and anatase TiO2 nanoparticles (with particle size of 15–30 nm) were dispersed well on the surface of the rGO sheets. rGO/TiO2 exhibited excellent photocatalytic activity for degradation of formaldehyde in indoor air and this can be attributed to the role of rGO, which can act as the electron sink and transporter for separating photo-generated electron–hole pairs through interfacial charge transfer. Furthermore, rGO could adsorb formaldehyde molecules from air to produce a high concentration of formaldehyde on the surface of rGO/TiO2. Under visible light irradiation for 240 min, the concentration of formaldehyde could be reduced to 58.5 ppbV. rGO/TiO2 showed excellent moisture-resistance behavior, and after five cycles, rGO/TiO2 maintained high photocatalytic activity for the removal of formaldehyde (84.6%). This work suggests that the synthesized rGO/TiO2 is a promising photocatalyst for indoor formaldehyde removal.

72 citations


Journal ArticleDOI
TL;DR: Experimental results show that the fast passivation of nZVI in high Cr(VI) solution is detrimental to the performance of n ZVI for Cr( VI) treatment and remediation.
Abstract: Solid phase reactions of Cr(VI) with Fe(0) were investigated with spherical-aberration-corrected scanning transmission electron microscopy (Cs-STEM) integrated with X-ray energy-dispersive spectroscopy (XEDS). Near-atomic resolution elemental mappings of Cr(VI)-Fe(0) reactions were acquired. Experimental results show that rate and extent of Cr(VI) encapsulation are strongly dependent on the initial concentration of Cr(VI) in solution. Low Cr loading in nZVI ( 1.0wt%) can quickly shut down the Cr uptake. With the progress of iron oxidation and dissolution, elements of Cr and O counter-diffuse into the nanoparticles and accumulate in the core region at low levels of Cr(VI) (e.g., 100mg/L). The passivation structure is stable over a wide range of pH unless pH is low enough to dissolve the passivation layer. X-ray photoelectron spectroscopy (XPS) depth profiling reconfirms that the composition of the newly-formed surface layer consists of Fe(III)-Cr(III) (oxy)hydroxides with Cr(VI) adsorbed on the outside surface. The insoluble and insulating Fe(III)-Cr(III) (oxy)hydroxide layer can completely cover the nZVI surface above the critical Cr loading and shield the electron transfer. Thus, the fast passivation of nZVI in high Cr(VI) solution is detrimental to the performance of nZVI for Cr(VI) treatment and remediation.

61 citations


Journal ArticleDOI
TL;DR: The most significant source for ozone chemical formation was identified to be rubber chemical industrial emissions, following one by vehicular emission, and the data shown herein may provide useful information to develop effective VOC pollution control strategies in industrialized area.
Abstract: Volatile organic compounds (VOCs) are a kind of important precursors for ozone photochemical formation. In this study, VOCs were measured from November 5th, 2013 to January 6th, 2014 at the Second Jinshan Industrial Area, Shanghai, China. The results showed that the measured VOCs were dominated by alkanes (41.8%), followed by aromatics (20.1%), alkenes (17.9%), and halo-hydrocarbons (12.5%). The daily trend of the VOC concentration showed a bimodal feature due to the rush-hour traffic in the morning and at nightfall. Based on the VOC concentration, a receptor model of Positive Matrix Factorization (PMF) coupled with the information related to VOC sources was applied to identify the major VOC emissions. The result showed five major VOC sources: solvent use and industrial processes were responsible for about 30% of the ambient VOCs, followed by rubber chemical industrial emissions (23%), refinery and petrochemical industrial emissions (21%), fuel evaporations (13%) and vehicular emissions (13%). The contribution of generalized industrial emissions was about 74% and significantly higher than that made by vehicle exhaust. Using a propylene-equivalent method, alkenes displayed the highest concentration, followed by aromatics and alkanes. Based on a maximum incremental reactivity (MIR) method, the average hourly ozone formation potential (OFP) of VOCs is 220.49 ppbv. The most significant source for ozone chemical formation was identified to be rubber chemical industrial emissions, following one by vehicular emission. The data shown herein may provide useful information to develop effective VOC pollution control strategies in industrialized area.

60 citations


Journal ArticleDOI
TL;DR: The questionnaire survey revealed that majority of the local people using 10-20years old drinking water supply schemes at the rate of 73% well supply, 13% hand pump supply, 11% spring supply and 3% river/streams supply, which spreads high prevalence of water borne diseases including hepatitis, intestinal infections and diarrhea.
Abstract: Fecal bacteria contaminate water resources and result in associated waterborne diseases. This study assessed drinking water quality and evaluated their potential health risks in Swat, Pakistan. Ground and surface drinking water were randomly collected from upstream to downstream in the River Swat watershed and analyzed for fecal contamination using fecal indicator bacteria (Escherichia coli) and physiochemical parameters (potential of hydrogen, turbidity, temperature, electrical conductivity, total dissolved solid, color, odor and taste). The physiochemical parameters were within their safe limits except in a few locations, whereas, the fecal contaminations in drinking water resources exceeded the drinking water quality standards of Pakistan Environmental Protection Agency (Pak-EPA), 2008 and World Health Organization (WHO), 2011. Multivariate and univariate analyses revealed that downstream urbanization trend, minimum distance between water sources and pit latrines/sewerage systems, raw sewage deep well injection and amplified urban, pastures and agricultural runoffs having human and animal excreta were the possible sources of contamination. The questionnaire survey revealed that majority of the local people using 10-20years old drinking water supply schemes at the rate of 73% well supply, 13% hand pump supply, 11% spring supply and 3% river/streams supply, which spreads high prevalence of water borne diseases including hepatitis, intestinal infections and diarrhea, dysentery, cholera, typhoid fever, jaundice and skin diseases in children followed by older and younger adults.

52 citations


Journal ArticleDOI
TL;DR: The toxicity and kinetic uptake potential of zinc oxide and titanium dioxide nanomaterials into the red bean (Vigna angularis) plant were investigated and revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant.
Abstract: The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.

Journal ArticleDOI
TL;DR: The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and bronze smelts sources.
Abstract: In order to understand the size distribution and the main kind of heavy metals in particulate matter on the lead and zinc smelting affected area, particulate matter (PM) and the source samples were collected in Zhuzhou, Hunan Province from December 2011 to January 2012 and the results were discussed and interpreted. Atmospheric particles were collected with different sizes by a cascade impactor. The concentrations of heavy metals in atmospheric particles of different sizes, collected from the air and from factories, were measured using an inductively coupled plasma mass spectrometry (ICP-MS). The results indicated that the average concentration of PM, chromium (Cr), arsenic (As), cadmium (Cd) and lead (Pb) in PM was 177.3 ± 33.2 μg/m3, 37.3 ± 8.8 ng/m3, 17.3 ± 8.1 ng/m3, 4.8 ± 3.1 ng/m3 and 141.6 ± 49.1 ng/m3, respectively. The size distribution of PM displayed a bimodal distribution; the maximum PM size distribution was at 1.1–2.1 μm, followed by 9–10 μm. The size distribution of As, Cd and Pb in PM was similar to the distribution of the PM mass, with peaks observed at the range of 1.1–2.1 μm and 9–10 μm ranges while for Cr, only a single-mode at 4.7–5.8 μm was observed. PM (64.7%), As (72.5%), Cd (72.2%) and Pb (75.8%) were associated with the fine mode below 2.1 μm, respectively, while Cr (46.6%) was associated with the coarse mode. The size distribution characteristics, enrichment factor, correlation coefficient values, source information and the analysis of source samples showed that As, Cd and Pb in PM were the typical heavy metal in lead and zinc smelting affected areas, which originated mainly from lead and zinc smelting sources.

Journal ArticleDOI
TL;DR: According to extended X-ray absorption fine structure analysis, the occurrence of U-Fe and U-U shells indicated that high effective removal of uranium was primarily inner-sphere coordination and then reductive co-precipitation at low pH.
Abstract: The magnetic iron oxide (Fe3O4) nanoparticles stabilized on the biochar were synthesized by fast pyrolysis of Fe(II)-loaded hydrophyte biomass under N2 conditions. The batch experiments showed that magnetic biochar presented a large removal capacity (54.35mg/g) at pH3.0 and 293K. The reductive co-precipitation of U(VI) to U(IV) by magnetic biochar was demonstrated according to X-ray diffraction, X-ray photoelectron spectroscopy and X-ray absorption near edge structure analysis. According to extended X-ray absorption fine structure analysis, the occurrence of U-Fe and U-U shells indicated that high effective removal of uranium was primarily inner-sphere coordination and then reductive co-precipitation at low pH. These observations provided the further understanding of uranium removal by magnetic materials in environmental remediation.

Journal ArticleDOI
TL;DR: It was found that particles produced from olive oil led to the highest deposition in the human respiratory tract, and minimizing the moisture content of ingredients before cooking and giving priority to the use of peanut oil instead of olive oil to reduce human exposure to PM.
Abstract: Cooking fume produced by oil and food at a high temperature releases large amount of fine particulate matter (PM) which have a potential hazard to human health. This chamber study investigated particle emission characteristics originated from using four types of oil (soybean oil, olive oil, peanut oil and lard) and different kinds of food materials (meat and vegetable). The corresponding emission factors (EFs) of number, mass, surface area and volume for particles were discussed. Temporal variation of size-fractionated particle concentration showed that olive oil produced the highest number PM concentration for the entire cooking process. Multiple path particle dosimetry (MPPD) model was performed to predict deposition in the human respiratory tract. Results showed that the pulmonary airway deposition fraction was the largest. It was also found that particles produced from olive oil led to the highest deposition. We strongly recommend minimizing the moisture content of ingredients before cooking and giving priority to the use of peanut oil instead of olive oil to reduce human exposure to PM.

Journal ArticleDOI
TL;DR: The influence of in-port ship emissions on gases and PM10 concentrations has been estimated in the port city of Calais, northern France, one of the busiest harbor in Europe, with numerous rotations of ferries or roll-on/roll-off cargo in average per day.
Abstract: The influence of in-port ship emissions on gases and PM10 concentrations has been estimated in the port city of Calais, northern France, one of the busiest harbor in Europe, with numerous rotations of ferries or roll-on/roll-off cargo in average per day. NOx, SO2, O3 and PM10 concentrations were continuously measured over a three-month period, as well as real-time particle size distribution. A rural site located at Cape Gris-Nez, 20km from Calais, was considered to deduce intrinsic contribution of ship emissions at the harbor city. The average concentrations of the studied species as well as the pattern of the conditional bivariate probability function at the two sites evidenced that in-port shipping, especially during the maneuvering operations, has an important influence on the NOx and SO2 concentrations. The impact of shipping in the harbor of Calais on average concentrations was estimated to 51% for SO2, 35% for NO, 15% for NO2 and 2% for PM10 in the studied period. Concentration peaks of SO2 and NOx associated with an O3 depletion appeared synchronized with departures and arrivals of ferries. For winds blowing from the harbor, when compared to the background level, the number of particles appeared 10 times higher, with the highest differences in the 30-67nm and the 109-167nm size ranges. The average impact of in-port ships on PM10 concentrations was estimated to +28.9μg/m3 and concerned mainly the PM1 size fraction (40%). Punctually, PM10 can potentially reach a concentration value close to 100μg/m3.

Journal ArticleDOI
TL;DR: Although maternal PFAS exposure was not associated with risk of GDM, significant positive associations were observed between evaluated exposure to specific PFAS congeners and increasing blood glucose, suggesting negative effects of maternal exposure tospecific PFAS compounds on glucose metabolism.
Abstract: This study was conducted to examine the association of perfluoroalkyl substance (PFAS) exposure with gestational diabetes mellitus (GDM) risk and postpartum fasting blood glucose. We used a 1:2 matched case-control study with 84 GDM subjects and 168 healthy pregnant women from Beijing, China. The maternal blood was collected at 1-2days before delivery, and eight linear isomers and fourteen branched isomers were determined in maternal serum. Logistic regression analyses were performed to evaluate the associations after adjusting for potential confounders. The median of the sum of levels of total PFASs was 4.24ng/mL with a interquartile range (IQR) of 2.82-6.54ng/mL. Although maternal PFAS exposure was not associated with risk of GDM, significant positive associations were observed between evaluated exposure to specific PFAS congeners and increasing blood glucose. The odds ratio (ORs) of the highest category of postpartum fasting blood glucose for perfluoro-1-metylheptylsulfonat (1m-PFOS), perfluoro-3/4-metylheptylsulfonat (3m+4m-PFOS), perfluoro-5-metylheptylsulfonat (5m-PFOS), and perfluorohexane sulfonate (PFHxS) were 2.03 (95% CI: 1.09-3.77), 1.93 (95% CI: 1.04-3.58), 2.48 (95% CI: 1.33-4.65), and 2.26 (95% CI: 1.21-4.21), respectively, suggesting negative effects of maternal exposure to specific PFAS compounds on glucose metabolism.

Journal ArticleDOI
Xiaole Zhao1, Yingchun Su1, Shubin Li1, Yajun Bi1, Xiaojun Han1 
TL;DR: Three-dimensional flowerlike Fe(OH)3 microspheres synthesized through a green yet low-cost injection method, for the removal of organic dyes and heavy metal ions have great potential in the field of water treatment.
Abstract: Dyestuffs and heavy metal ions in water are seriously harmful to the ecological environment and human health. Three-dimensional (3D) flowerlike Fe(OH)3 microspheres were synthesized through a green yet low-cost injection method, for the removal of organic dyes and heavy metal ions. The Fe(OH)3 microspheres were characterized by thermal gravimetric analysis (TGA), Fourier transform infrared (FT-IR), and transmission electron microscopy (TEM) techniques. The adsorption kinetics of Congo Red (CR) on Fe(OH)3 microspheres obeyed the pseudo-second-order model. Cr6+ and Pb2+ adsorption behaviors on Fe(OH)3 microspheres followed the Langmuir isotherm model. The maximum adsorption capacities of the synthesized Fe(OH)3 were 308, 52.94, and 75.64mg/g for CR, Cr6+, and Pb2+ respectively. The enhanced adsorption performance originated from its surface properties and large specific surface area of 250m2/g. The microspheres also have excellent adsorption stability and recyclability. Another merit of the Fe(OH)3 material is that it also acts as a Fenton-like catalyst. These twin functionalities (both as adsorbent and Fenton-like catalyst) give the synthesized Fe(OH)3 microspheres great potential in the field of water treatment.

Journal ArticleDOI
TL;DR: In this study, the emissions of air pollutants from aircraft and other sources at ZBAA in 2015 were estimated using an improved method, which considered the mixing layer height calculated based on aircraft meteorological data relay (AMDAR), instead of using the height recommended by ICAO.
Abstract: Beijing Capital International Airport (ZBAA) is the world's second busiest airport. In this study, the emissions of air pollutants from aircraft and other sources at ZBAA in 2015 were estimated using an improved method, which considered the mixing layer height calculated based on aircraft meteorological data relay (AMDAR), instead of using the height (915m) recommended by ICAO. The yearly emissions of NOx, CO, VOCs, SO2, and PM2.5 at the airport were 8.76×103, 4.43×103, 5.43×102, 4.80×102, and 1.49×102ton/year, respectively. The spatial-temporal distribution of aircraft emissions was systematically analyzed to understand the emission characteristics of aircraft. The results indicated that NOx was mainly emitted during the take-off and climb phases, accounting for 20.5% and 55.5% of the total emissions. CO and HC were mainly emitted during the taxi phase, accounting for 91.6% and 92.2% of the total emissions. Because the mixing layer height was high in summer, the emissions of aircraft were at the highest level throughout the year. Based on the detailed emissions inventory, four seasons simulation using WRF-CMAQ model was performed over the domain surrounding the airport. The results indicated that the contribution to PM2.5 was relatively high in winter; the average impact was about 1.15μg/m3 within a radius of 1km around the airport. Meanwhile, the near surroundings and southwest areas of the airport are the most sensitive to PM2.5.

Journal ArticleDOI
TL;DR: The results show that the ACMs can be used as efficient sorbents for the removal of mercury and may also be useful for the adsorption of other heavy metals.
Abstract: For the first time, a series of alkynyl carbon materials (ACMs) were prepared via the mechanochemical reaction of CaC2 with six polyhalogenated precursors, namely CCl4, C2Cl6, C2Cl4, C6Cl6, C6Br6, and C14H4Br10 (ACM-1, ACM-2, ACM-3, ACM-4, ACM-5, and ACM-6, respectively) and used for the adsorptive removal of mercury from aqueous solutions. Based on preliminary investigations, the adsorption of mercury on ACM-5 was studied in depth. Specifically, the effect of pH on mercury adsorptivity, adsorption kinetics, thermodynamics, isotherms, and recyclability was studied. The adsorptivity of mercury on ACMs was found to be closely related to the hydrocarbon precursor, specific surface area of sorbent, and the alkynyl content. ACM-5 showed the best performance and is among the best raw carbonaceous sorbents reported so far, with a Langmuir saturated adsorption capacity of 191.9mgg-1. The promising mercury adsorption performance mainly arises from the strong Lewis soft acid-soft base interactions between the alkynyl groups and mercury ions. The adsorption isotherms could be satisfactorily correlated with the Langmuir equation. The results show that the ACMs can be used as efficient sorbents for the removal of mercury and may also be useful for the adsorption of other heavy metals.

Journal ArticleDOI
TL;DR: According to the single-factor index, Nemerow index and pollution load index analyses, the atmospheric dustfall in Zhuzhou could easily cause severe heavy metal pollution to urban soil, and the most polluting element was Cd, followed by Pb, As and Hg.
Abstract: Through field sampling of atmospheric dustfall in regions of Zhuzhou City, China for a period of one year, the deposition fluxes of atmospheric dustfall and five heavy metals contained inside, including Cr, As, Cd, Hg and Pb, were analyzed. Meanwhile the enrichment factor and index methods were used to analyze the pollution characteristics of heavy metals of atmospheric dustfall in Zhuzhou. The annual deposition flux of atmospheric dustfall in Zhuzhou was 50.79 g/(m2·year), while the annual deposition fluxes of Cr, As, Cd, Hg and Pb were 9.80, 59.69, 140.09, 0.87 and 1074.91 mg/(m2·year), respectively. The pollution level of atmospheric dustfall in Zhuzhou was relatively lower compared with most other cities in China, but the deposition fluxes of As, Cd, Hg and Pb in atmospheric dustfall in Zhuzhou were much higher than that in most cities and regions around the world. Cd is the typical heavy metal element in atmospheric dustfall in Zhuzhou, and both the enrichment factor and pollution index of Cd were the highest. Cd, Hg, Pb and As in atmospheric dustfall were mainly from human activities. According to the single-factor index, Nemerow index and pollution load index analyses, the atmospheric dustfall in Zhuzhou could easily cause severe heavy metal pollution to urban soil, and the most polluting element was Cd, followed by Pb, As and Hg. Only the pollution level of Cr lay in the safety region and mainly originated from natural sources.

Journal ArticleDOI
TL;DR: The results showed that long-term Hg mining activities had resulted in THg and MeHg contaminations in soil-rice system, and the newly-deposited atmospheric Hg was more readily methylated relative to the native Hg already in soils, which could be responsible for the elevated MeHG levels in soils and rice grains around the active artificial Hg smelting site.
Abstract: Rice paddy soil is recognized as the hotspot of mercury (Hg) methylation, which is mainly a biotic process mediated by many abiotic factors. In this study, effects of key soil properties on the production and bioaccumulation of Hg and methylmercury (MeHg) in Hg-contaminated rice paddies were investigated. Rice and soil samples were collected from the active Hg smelting site and abandoned Hg mining sites (a total of 124 paddy fields) in the Wanshan Mercury Mine, China. Total Hg (THg) and MeHg in soils and rice grains, together with sulfur (S), selenium (Se), organic matter (OM), nitrogen (N), phosphorus (P), mineral compositions (e.g., SiO2, Al2O3 and Fe2O3) and pH in soils were quantified. The results showed that long-term Hg mining activities had resulted in THg and MeHg contaminations in soil-rice system. The newly-deposited atmospheric Hg was more readily methylated relative to the native Hg already in soils, which could be responsible for the elevated MeHg levels in soils and rice grains around the active artificial Hg smelting site. The MeHg concentrations in soils and rice grains showed a significantly negative relationship with soil N/Hg, S/Hg and OM/Hg ratio possibly due to the formation of low-bioavailability Hg-S(N)-OM complexes in rhizosphere. The Hg-Se antagonism undoubtedly occurred in soil-rice system, while its role in bioaccumulation of MeHg in the MeHg-contaminated rice paddies was minor. However, other soil properties showed less influence on the production and bioaccumulation of MeHg in rice paddies located at the Wanshan Mercury Mine zone.

Journal ArticleDOI
TL;DR: The fractional waste compositions in China showed similar features with other developing countries but differ significantly with developed countries, suggesting that the above-mentioned conclusions could also be true in other developed countries.
Abstract: Chemical waste compositions are important for municipal solid waste management, as they determine the pollution potentials from different waste strategies. A representative dataset for chemical characteristics of individual waste fractions is frequently required to assess chemical waste composition, but it is usually reported in developed countries and not in developing countries. In this study, a dataset for Chinese waste was established through careful data screening and assessment, named as CN dataset. Meanwhile, a dataset for Danish waste (DK dataset) was also summarized based on previous studies. In order to quantitatively evaluate the reliabilities of CN and DK datasets, the chemical waste compositions in four Chinese cities were estimated by utilizing both of them, respectively. It is indicated that the usage of CN datasets led to significantly lower discrepancies from the actual values based on laboratory analysis in most cases. Within the datasets, the moisture contents of food waste, paper, textiles, and plastics, the carbon content of food waste, as well as the oxygen content of plastics would induce significant divergences, which should be paid special attention when gathering the information. In addition, the fractional waste compositions in China showed similar features with other developing countries but differ significantly with developed countries. Thus the above-mentioned conclusions could also be true in other developing countries.

Journal ArticleDOI
Yuping Xiang1, Yongmin Wang1, Cheng Zhang1, Hong Shen1, Dingyong Wang1 
TL;DR: It is suggested that seasonally water level fluctuations can enhance the microbial abundance and diversity, as well as MeHg production in the TGR.
Abstract: Reservoirs tend to have enhanced methylmercury (MeHg) concentrations compared to natural lakes and rivers, and water level fluctuations can promote MeHg production. Until now, little research has been conducted on the effects of microorganisms in soils for the formation of MeHg during different drying and flooding alternating conditions in the Three Gorges Reservoir (TGR). This study aimed to understand how water level fluctuations affect soil microbial composition and mercury concentrations, and if such microbial variations are related to Hg methylation. The results showed that MeHg concentrations and the ratios of MeHg to THg (MeHg%) in soils were higher in the seasonally drying and flooding alternating areas (DFAs, 175–155 m) than those in the non-inundated (NIAs, > 175 m) and inundated areas (IAs,

Journal ArticleDOI
TL;DR: It was found that dosing high concentration of bimetallic NZVI/Cu0 has a negative effect on ammonia stripping regardless of the aeration condition and the phosphorus removal increased sharply both under aerobic and anaerobic conditions.
Abstract: Nowadays, trends in wastewater treatment by zero-valent iron (ZVI) were turned to use bimetallic NZVI particles by planting another metal onto the ZVI surface to increase its reactivity. Nano size zero-valent iron/copper (NZVI/Cu0) bimetallic particles were synthesized in order to examine its toxicity effects on the wastewater microbial life, kinetics of phosphorus, ammonia stripping and the reduction of chemical oxygen demand (COD). Various concentrations of NZVI/Cu0 and operation conditions both aerobic and anaerobic were investigated and compared with pure NZVI experiment. The results showed that addition 10mg/L of NZVI/Cu0 significantly increased the numbers of bacteria colonies under anaerobic condition, conversely it inhibited bacteria activity with the presence of oxygen. Furthermore, the impact of nanoparticles on ammonia stripping and phosphorus removal was also linked to the emitted iron ions electrons. It was found that dosing high concentration of bimetallic NZVI/Cu0 has a negative effect on ammonia stripping regardless of the aeration condition. In comparison to control, dosing only 10mg/L NZVI/Cu0, the phosphorus removal increased sharply both under aerobic and anaerobic conditions, these outcomes were obtained as a result of complete dissolution of bimetallic nanoparticles which formed copper-iron oxides components that are attributed to increasing the phosphorus adsorption rate.

Journal ArticleDOI
TL;DR: It is suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter, further aggravating the problem of global warming.
Abstract: Aquaculture ponds are dominant features of the landscape in the coastal zone of China. Generally, aquaculture ponds are drained during the non-culture period in winter. However, the effects of such drainage on the production and flux of greenhouse gases (GHGs) from aquaculture ponds are largely unknown. In the present study, field-based research was performed to compare the GHG fluxes between one drained pond (DP, with a water depth of 0.05 m) and one undrained pond (UDP, with a water depth of 1.16 m) during one winter in the Min River estuary of southeast China. Over the entire study period, the mean CO 2 flux in the DP was (0.75 ± 0.12) mmol/(m 2 ·hr), which was significantly higher than that in the UDP of (− 0.49 ± 0.09) mmol/(m 2 ·hr) ( p 2 in winter. Mean CH 4 and N 2 O emissions were significantly higher in the DP compared to those in the UDP (CH 4 = (0.66 ± 0.31) vs. (0.07 ± 0.06) mmol/(m 2 ·hr) and N 2 O = (19.54 ± 2.08) vs. (0.01 ± 0.04) µmol/(m 2 ·hr)) ( p 4 and N 2 O emissions. Changes in environmental variables (including sediment temperature, pH, salinity, redox status, and water depth) contributed significantly to the enhanced GHG emissions following pond drainage. Furthermore, analysis of the sustained-flux global warming and cooling potentials indicated that the combined global warming potentials of the GHG fluxes were significantly higher in the DP than in the UDP ( p 2 -eq/(m 2 ·hr), respectively. Our findings suggested that drainage of aquaculture ponds can increase the emissions of potent GHGs from the coastal zone of China to the atmosphere during winter, further aggravating the problem of global warming.

Journal ArticleDOI
TL;DR: The proliferations and spread of antibiotic resistance through bioaerosols in WWTP treating cephalosporin-producing wastewater is indicated, which imposed a potential health risk for the staff and residents in the neighborhood, calling for administrative measures to minimize the air-transmission hazard.
Abstract: Pharmaceutical wastewater treatment plants (WWTPs) are thought to be a “seedbed” and reservoirs for multi-antibiotic resistant pathogenic bacteria which can be transmitted to the air environment through aeration. We quantified airborne multi-antibiotic resistance in a full-scale plant to treat antibiotics-producing wastewater by collecting bioaerosol samples from December 2014 to July 2015. Gram-negative opportunistic pathogenic bacteria (GNOPB) were isolated, and antibiotic susceptibility tests against 18 commonly used antibiotics, including 11 β-lactam antibiotics, 3 aminoglycosides, 2 fluoroquinolones, 1 furan and 1 sulfonamide, were conducted. More than 45% of airborne bacteria isolated from the pharmaceutical WWTP were resistant to three or more antibiotics, and some opportunistic pathogenic strains were resistant to 16 antibiotics, whereas 45.3% and 50.3% of the strains isolated from residential community and municipal WWTP showed resistance to three or more antibiotics. The calculation of the multiple antibiotic resistance (MAR) index demonstrated that the air environment in the pharmaceutical WWTP was highly impacted by antibiotic resistance, while the residential community and municipal WWTP was less impacted by antibiotic resistance. In addition, we determined that the dominant genera of opportunistic pathogenic bacteria isolated from all bioaerosol samples were Acinetobacter , Alcaligenes , Citrobacter , Enterobacter , Escherichia , Klebsiella , Pantoea , Pseudomonas and Sphingomonas . Collectively, these results indicate the proliferations and spread of antibiotic resistance through bioaerosols in WWTP treating cephalosporin-producing wastewater, which imposed a potential health risk for the staff and residents in the neighborhood, calling for administrative measures to minimize the air-transmission hazard.

Journal ArticleDOI
TL;DR: Theoxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons, evidenced the major role of organic compounds in the toxicity of PM.
Abstract: Particulate matter in ambient air constitutes a complex mixture of fine and ultrafine particles composed of various chemical compounds including metals, ions, and organics. A multidisciplinary approach was developed by studying physico-chemical characteristics and mechanisms involved in the toxicity of particulate atmospheric pollution. PM0.3-2.5 and PM2.5 including ultrafine particles were sampled in Dunkerque, a French industrialized seaside city. PM samples were characterized from a chemical and toxicological point of view. Physico-chemical characterization evidenced that PM2.5 comes from several sources: natural ones, such as soil resuspension and marine sea-salt emissions, as well as anthropogenic ones, such as shipping traffic, road traffic, and industrial activities. Human BEAS-2B lung cells were exposed to PM0.3-2.5, or to the Extractable Organic Matter (EOM) of PM0.3-2.5 and PM2.5. These exposures induced several mechanisms of action implied in the genotoxicity, such as oxidative DNA adducts and DNA Damage Response. The toxicity of PM-EOM was higher for the sample including the ultrafine fraction (PM2.5) containing also higher concentrations of polycyclic aromatic hydrocarbons. These results evidenced the major role of organic compounds in the toxicity of PM.

Journal ArticleDOI
TL;DR: The significant mixed effects of both anthropogenic pollution from urban zones and biogenic emission in rural areas on the regional O3 pollution in the NCP region is demonstrated, and may have general applicability in facilitating the understanding of the formation of secondary pollution over China.
Abstract: Regional ozone (O3) pollution has drawn increasing attention in China over the recent decade, but the contributions from urban pollution and biogenic emissions have not been clearly elucidated. To better understand the formation of the regional O3 problem in the North China Plain (NCP), intensive field measurements of O3 and related parameters were conducted at a rural site downwind of Ji'nan, the capital city of Shandong province, in the summer of 2013. Markedly severe O3 pollution was recorded, with the O3 mixing ratios exceeding the Chinese national ambient air quality standard on 28 days (a frequency of 78%) and with a maximum hourly value of 198 ppbv. Extensive regional transport of well-processed urban plumes to the site was identified. An observation-constrained chemical box model was deployed to evaluate in situ photochemical O3 production on two episodes. The results show that the in situ formation accounted for approximately 46% of the observed O3 accumulation, while the remainder (~ 54%) was contributed by regional transport of the O3-laden urban plumes. The in situ ozone production was in a mixed controlled regime that reducing either NOx or VOCs would lead to a reduction of ozone formation. Biogenic VOCs played an important role in the local ozone formation. This study demonstrates the significant mixed effects of both anthropogenic pollution from urban zones and biogenic emission in rural areas on the regional O3 pollution in the NCP region, and may have general applicability in facilitating the understanding of the formation of secondary pollution over China.

Journal ArticleDOI
TL;DR: It was showed that high levels of PAN in winter were mainly caused by local accumulation and strong photochemical reactions during haze episodes, while mass transport played only a minor role.
Abstract: Peroxyacetyl nitrate (PAN), as a major secondary pollutant, has gained increasing worldwide attentions, but relevant studies in China are still quite limited. During winter of 2015 to summer of 2016, the ambient levels of PAN were measured continuously by an automatic gas chromatograph equipped with an electron capture detector (GC–ECD) analyzer at an urban site in Jinan (China), with related parameters including concentrations of O3, NO, NO2, PM2.5, HONO, the photolysis rate constant of NO2 and meteorological factors observed concurrently. The mean and maximum values of PAN concentration were (1.89 ± 1.42) and 9.61 ppbv respectively in winter, and (2.54 ± 1.44) and 13.47 ppbv respectively in summer. Unusually high levels of PAN were observed during severe haze episodes in winter, and the formation mechanisms of them were emphatically discussed. Study showed that high levels of PAN in winter were mainly caused by local accumulation and strong photochemical reactions during haze episodes, while mass transport played only a minor role. Accelerated photochemical reactions (compared to winter days without haze) during haze episodes were deduced by the higher concentrations but shorter lifetimes of PAN, which was further supported by the sufficient solar radiation in the photolysis band along with the high concentrations of precursors (NO2, VOCs) and HONO during haze episodes. In addition, significant PAN accumulation during calm weather of haze episodes was verified by meteorological data.

Journal ArticleDOI
TL;DR: The speciation of the C1s signal by X-ray photoelectron spectroscopy revealed the contribution of aromatic and aliphatic hydrocarbons as the main components in both seasons and Fe, Zn and Cu were the most abundant metals in both TSP and PM2.5 in the two seasons.
Abstract: During the winter period (January-March 2016), the total suspended particles (TSP) and particulate matter smaller than 2.5μm (PM2.5) were characterized by the application of various analytical techniques in four zones of the Metropolitan Area of Monterrey in Mexico. To evaluate the seasonal variation of some elements in the particulate matter, the results of this study were compared with those obtained during the summer season (July-September 2015). The speciation of the C1s signal by X-ray photoelectron spectroscopy revealed the contribution of aromatic and aliphatic hydrocarbons as the main components in both seasons. Conversely, carboxylic groups associated with biogenic emissions were detected only in winter. The percentages of SO42- ions were lower in winter, possibly caused by the decrease in the solar radiation, and relative humidity recorded. The results of the ICP analysis revealed that Fe, Zn and Cu were the most abundant metals in both TSP and PM2.5 in the two seasons. There were significant seasonal variations for concentrations of As, Ni and Zn in the urban area and for Fe, As, Cd, Ni and Zn in the industrial zone. This was attributed to the greater burning of fuels as well as to an increase in vehicular traffic, the effect of thermal inversion and changes in some meteorological parameters. The results of the sequential microanalysis by Raman spectroscopy and SEM/EDS allowed observation of deposits of carbonaceous material on the particles and to perform the speciation of particles rich in Fe and Pb, which helped infer their possible emission sources.