scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Medical Entomology in 2018"


Journal ArticleDOI
TL;DR: Large numbers of Haemaphysalis longicornis Neumann (Ixodida: Ixodidae) infesting a sheep in Hunterdon County, New Jersey, United States are reported.
Abstract: We report the discovery of large numbers of Haemaphysalis longicornis Neumann (Ixodida: Ixodidae) infesting a sheep in Hunterdon County, New Jersey, United States. All life stages were found on the sheep, which had no history of travel outside the country. H. longicornis is native to East Asia, and there are invasive populations in Australia, New Zealand and several Pacific islands, where this tick is a major livestock pest. It is currently unknown whether the New Jersey collections represent a limited or established population, but because this species could present a significant threat to human and animal health in the United States, vigilance is encouraged.

193 citations


Journal ArticleDOI
TL;DR: It is suggested that passive tick surveillance provides a timely and reliable signal of emerging risk areas for Lyme disease in Canada.
Abstract: Lyme disease is an emerging public health threat in Canada. In this context, rapid detection of new risk areas is essential for timely application of prevention and control measures. In Canada, information on Lyme disease risk is collected through three surveillance activities: active tick surveillance, passive tick surveillance, and reported human cases. However, each method has shortcomings that limit its ability to rapidly and reliably identify new risk areas. We investigated the relationships between risk signals provided by human cases, passive and active tick surveillance to assess the performance of tick surveillance for early detection of emerging risk areas. We used regression models to investigate the relationships between the reported human cases, Ixodes scapularis (Say; Acari: Ixodidae) ticks collected on humans through passive surveillance and the density of nymphs collected by active surveillance from 2009 to 2014 in the province of Quebec. We then developed new risk indicators and validated their ability to discriminate risk levels used by provincial public health authorities. While there was a significant positive relationship between the risk signals provided all three surveillance methods, the strongest association was between passive tick surveillance and reported human cases. Passive tick submissions were a reasonable indicator of the abundance of ticks in the environment (sensitivity and specificity [Se and Sp] < 0.70), but were a much better indicator of municipalities with more than three human cases reported over 5 yr (Se = 0.88; Sp = 0.90). These results suggest that passive tick surveillance provides a timely and reliable signal of emerging risk areas for Lyme disease in Canada.

53 citations


Journal ArticleDOI
TL;DR: It is suggested that temperature-independent diapause mechanisms explain some key observed variations in I. scapularis seasonality, and are responsible in part for geographic variations in seasonality in the United States.
Abstract: The seasonal activity pattern of immature Ixodes scapularis Say (Acari: Ixodidae) varies geographically in the United States, which may affect the efficiency of transmission cycles of pathogens transmitted by this species. To study the factors that determine seasonality, a multiyear study at seven sites across the geographic range of I. scapularis systematically collected questing ticks by flagging/dragging, and feeding ticks by capture of their hosts. The observed phenology patterns were consistent with previous studies reporting geographic variation in seasonal tick activity. Predictions of seasonal activity for each site were obtained from an I. scapularis simulation model calibrated using contemporaneous weather data. A range of scenarios for life-cycle processes-including different regimes of temperature-independent behavioral and developmental diapause, variations in temperature-development rate relationships, and temperature-dependent tick activity-were used in model formulations. These formulations produced a range of simulations of seasonal activity for each site and were compared against the field observed tick data using negative binomial regression models. Best fit scenarios were chosen for each site on the basis of Akaike's information criterion and regression model parameters. This analysis suggests that temperature-independent diapause mechanisms explain some key observed variations in I. scapularis seasonality, and are responsible in part for geographic variations in I. scapularis seasonality in the United States. However, diapause appears to operate in idiosyncratic ways in different regions of the United States, so further studies on populations in different regions will be needed to enable predictive modeling of climatic and climate change effects on I. scapularis seasonal activity and pathogen transmission.

46 citations


Journal ArticleDOI
TL;DR: No evidence of Wolbachia is found within the limits of the polymerase chain reaction–based assay, suggesting that natural infections of this endosymbiont are unlikely to occur throughout the worldwide distribution of Ae.
Abstract: Wolbachia is a genus of endosymbiotic bacteria that infects 66% of all insect species. Its major impact on insects is in reproduction: sterility, production of one sex, and/or parthenogenesis. Another effect was discovered when the disease-transmitting mosquito, Aedes aegypti Linnaeus (Diptera: Culicidae), was infected with Wolbachia isolated from Drosophila: infected female mosquitoes became less capable of transmitting diseases such as dengue fever and chikungunya. This has led to releases of Ae. aegypti carrying Wolbachia in an attempt to control disease. An open question is whether there are natural Wolbachia infections of this mosquito. We assayed DNA from 2,663 Ae. aegypti from 27 countries on six continents, 230 from laboratory strains, and 72 Aedes mascarensis MacGregor (Diptera: Culicidae) for presence of Wolbachia DNA. Within the limits of our polymerase chain reaction-based assay, we found no evidence of Wolbachia, suggesting that natural infections of this endosymbiont are unlikely to occur throughout the worldwide distribution of Ae. aegypti.

45 citations


Journal ArticleDOI
TL;DR: Researchers conducting vector surveillance field studies should carefully consider their study design and objectives when deciding on a trapping method or methods, and specifically endeavor to understand the limitations of their data, to take advantage of the best attributes of light traps while avoiding their dark side.
Abstract: Light-baited suction traps are one of the most widely used tools for vector surveillance. Their popularity stems from ease of use even in remote locations, range and abundance of species caught, and low cost. The availability of smaller, portable models, like the CDC miniature light trap, have further increased their ubiquity in entomological field studies. However, when researchers have looked, light trap collections are usually biased in ways that may affect data interpretation for epidemiological studies. If used alone, light traps may fail to collect important or infected vectors, and light traps are inefficient or ineffective when competing ambient light is present. In this article, we discuss these biases and limitations in terms of their effect on collection efficiency, population data, and pathogen detection. While light trap data certainly have a purpose, an over-reliance on light trapping risks drawing false conclusions about vector populations and vector-borne disease epidemiology. These concerns are especially troubling when light trap data are used to inform policy decisions meant to protect human and animal health. Particularly when a species' response to light is unknown or poorly characterized, light traps should be used in conjunction with supplemental sampling methods. Researchers conducting vector surveillance field studies should carefully consider their study design and objectives when deciding on a trapping method or methods, and specifically endeavor to understand the limitations of their data. Only then can researchers take advantage of the best attributes of light traps while avoiding their dark side.

43 citations


Journal ArticleDOI
TL;DR: Investigation of tick surveillance in Bourbon County supports the contention that A. americanum is a vector of Bourbon virus to humans and multiple detections of Heartland virus and Bourbon virus in A.Americanum ticks suggest that these viruses share important components of their transmission cycles.
Abstract: Bourbon virus (Family Orthomyxoviridae: Genus Thogotovirus) was first isolated from a human case-patient residing in Bourbon County, Kansas, who subsequently died. Before becoming ill in late spring of 2014, the patient reported several tick bites. In response, we initiated tick surveillance in Bourbon County and adjacent southern Linn County during spring and summer of 2015. We collected 20,639 host-seeking ticks representing four species from 12 sites. Amblyomma americanum (L.) (Acari: Ixodidae) and Dermacentor variabilis (Say) (Acari: Ixodidae) accounted for nearly all ticks collected (99.99%). Three tick pools, all composed of adult A. americanum ticks collected in Bourbon County, were virus positive. Two pools were Heartland virus (Family Bunyaviridae: Genus Phlebovirus) positive, and one was Bourbon virus positive. The Bourbon virus positive tick pool was composed of five adult females collected on a private recreational property on June 5. Detection of Bourbon virus in the abundant and aggressive human-biting tick A. americanum in Bourbon County supports the contention that A. americanum is a vector of Bourbon virus to humans. The current data combined with virus detections in Missouri suggest that Bourbon virus is transmitted to humans by A. americanum ticks, including both the nymphal and adult stages, that ticks of this species become infected as either larvae, nymphs or both, perhaps by feeding on viremic vertebrate hosts, by cofeeding with infected ticks, or both, and that Bourbon virus is transstadially transmitted. Multiple detections of Heartland virus and Bourbon virus in A. americanum ticks suggest that these viruses share important components of their transmission cycles.

40 citations


Journal ArticleDOI
TL;DR: The discovery of a large infestation of adult and nymphal lone star ticks detected on a dead male white-tailed deer, Odocoileus virginianus (Zimmerman) (Artiodactyla: Cervidae), on Manresa Island, Norwalk, in June 2017, indicating a long established, undetected population along the southwestern coast.
Abstract: In the United States, the lone star tick, Amblyomma americanum (L.) (Acari: Ixodidae), is an aggressive southeastern species whose range has reportedly been steadily expanding northward. The number of A. americanum specimens submitted to the Tick Testing Laboratory (TTL) at the Connecticut Agricultural Experiment Station (CAES) increased by 58% from the period of 1996-2006 (n = 488) to 2007-2017 (n = 773), mainly from Fairfield County in the southwestern corner of the state. The greatest numbers of A. americanum submissions to the CAES-TTL were from the City of Norwalk and a few adjacent municipalities. We also report the discovery of a large infestation of adult and nymphal lone star ticks detected on a dead male white-tailed deer, Odocoileus virginianus (Zimmerman) (Artiodactyla: Cervidae), on Manresa Island, Norwalk, in June 2017, indicating a long established, undetected population along the southwestern coast. A sample of nymphal and adult host-seeking A. americanum collected July 2017 from Manresa Island were tested and a proportion were positive for Ehrlichia chaffeensis, Ehrlichia ewingii, and Anaplasma phagocytophilum. The A. americanum tick and its associated disease pathogens are expected to become an increasing public health concern in southern New England.

32 citations


Journal ArticleDOI
TL;DR: This study challenges major concepts of the dilution effect within the Connecticut landscape and calls for new managerial actions to address the current state of the authors' woodlands and abundance of host species in the interest of both forest and public health.
Abstract: The dilution effect in the zoonotic disease transmission cycle theorizes that an increased diversity of host species will alter transmission dynamics, result in a decrease in pathogen prevalence, and potentially lower human disease incidence. The interrelationship of Borrelia burgdorferi (Johnson, Schmid, Hyde, Steigerwalt, and Brenner) (Spirochaetales: Spirochaetaceae), the etiological agent of Lyme disease (LD), and its primary vector, blacklegged ticks (Ixodes scapularis Say) (Acari: Ixodidae), is a commonly used example of the dilution effect, suggesting that an increased diversity of host species will be found in large, undisturbed forested tracts and lower diversity in fragmented forests. Given that Connecticut woodlands are mature with heavy upper canopies and generally poor habitat quality, we hypothesized there would be higher diversity of host species resulting in lower prevalence of B. burgdorferi in white-footed mice (Peromyscus leucopus Rafinesque) (Rodentia: Cricetidae) in forested residential areas. Using camera and live small mammal trapping techniques, we determined there was a greater richness of reservoir host species, significantly higher encounters with hosts, and significantly lower B. burgdorferi host-infection in residential areas as compared to large, intact forested stands. Furthermore, we determined that the driving factor of pathogen dilution was not host species diversity, but rather overall encounter abundance with alternative hosts, regardless of habitat type. Our study challenges major concepts of the dilution effect within the Connecticut landscape and calls for new managerial actions to address the current state of our woodlands and abundance of host species in the interest of both forest and public health.

29 citations


Journal ArticleDOI
TL;DR: Functional responses are applied to examine predation efficiencies of a recently described ephemeral pond specialist species, the freshwater calanoid copepod Lovenula raynerae, and advocate that calanoids can exert particularly marked predatory impact on lower trophic groups, and that their use in disease vector mosquito control strategies should be further explored.
Abstract: Biological control can assist in the management of disease vector mosquitoes. However, we urgently require the identification of novel and effective agents to aid population management strategies. Quantifying interactions strengths between consumers and resources is central to our understanding of trophic stability, and is relevant within the biological control context. Previously, pPredatory biocontrol of disease vector mosquito species has previously focused extensively on cyclopoid copepods, but prey size refuge effects have been identified as a hindrance to their predatory efficacy. Calanoid copepods have yet to be comprehensively examined in the context of mosquito control, despite their high prevalence, diversity and distribution. Here, we apply functional responses (FRs; resource use as a function of resource density) to examine interaction strengthspredation efficiencies of a recently described ephemeral pond specialist species, the freshwater calanoid copepod Lovenula raynerae Suarez-Morales, Wasserman & Dalu 2015, using different size classes of larvae of the disease vector complex Culex pipiens as prey. Lovenula raynerae effectively consumed C. pipiens larvae across their ontogeny. A potentially population destabilising Type II FR was exhibited towards both early and late instar mosquitoes, indicative of a lack of prey refuge across ontogenetic stages. Attack rates were greatest and handling times lowest for early instar larvae compared to late instar larvae. These traits contrast to other copepods, commonly applied in biocontrol, which are only able to handle early instars, and in much smaller numbers. We thus advocate that calanoid copepods can exert particularly marked predatory impact on lower trophic groups, and that their use in disease vector mosquito control strategies should be further explored.

29 citations


Journal ArticleDOI
TL;DR: Assessment of resistance status for six AIs used in adult mosquito control in the United States found some level of resistance was detected against all tested AIs in several mosquito populations and some varied between 2015 and 2016.
Abstract: Mosquitoes exposed to sublethal doses of insecticides may be selected for resistance to insecticide active ingredients (AIs). Mosquitoes are exposed to AIs through agricultural, public/private mosquito control programs, homeowners, and other sources. Hence, mosquito control programs should routinely measure the resistance/susceptibility status of mosquito populations of public health concern. The objectives here were to determine resistance status for six AIs used in adult mosquito control in the United States to assess how resistance/susceptibility differs between AI, mosquito species (states where > 1 species collected), and between years (some populations sampled for 2 yr). Field-collected eggs from 21 mosquito populations of six different species or hybrid species (Aedes albopictus Skuse [Diptera: Culicidae], Aedes aegypti L. [Diptera: Culicidae], Culex nigripalpus Theobald, Culex pipiens L. [Diptera: Culicidae], Culex quinquefasciatus Say [Diptera: Culicidae], Cx. pipiens/quinquefasciatus) were obtained. Centers for Disease Control and Prevention bottle bioassays were used to assess the resistance/susceptibility status for six AIs (bifenthrin, deltamethrin, etofenprox, malathion, permethrin, and phenothrin). World Health Organization guidelines were used to classify mosquitoes as susceptible (98-100% mortality at diagnostic time [DT]), possibly resistant (80-97% mortality at DT), or resistant (<80% mortality at DT). Significant differences were observed in mosquito susceptibility/resistance between species and AIs. In states where both Aedes and Culex were collected, the odds of exhibiting resistance in Culex were 68-69 times higher than Aedes (Texas odds ratio: 69.30; 95% confidence interval: 5.86, 819.44; P = 0.001; North Carolina odds ratio: 67.99; 95% confidence interval: 15.21, 303.94; P < 0.0001). Some level of resistance was detected against all tested AIs in several mosquito populations and some varied between 2015 and 2016.

28 citations


Journal ArticleDOI
TL;DR: Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) are the most commonly encountered and medically relevant tick species in New York State and have exhibited recent geographic range expansion.
Abstract: Blacklegged ticks (Ixodes scapularis Say, Acari: Ixodidae) are the most commonly encountered and medically relevant tick species in New York State (NY) and have exhibited recent geographic range expansion. Forests and adjacent habitat are important determinants of I. scapularis density and may influence tick-borne pathogen prevalence. We examined how percent forest cover, dominant land cover type, and habitat type influenced I. scapularis nymph and adult density, and associated tick-borne pathogen prevalence, in an inland Lyme-emergent region of NY. I. scapularis nymphs and adults were collected from edge and wooded habitats using tick drags at 16 sites in Onondaga County, NY in 2015 and 2016. A subsample of ticks from each site was tested for the presence of Borrelia burgdorferi, Borrelia miyamotoi, Anaplasma phagocytophilum, and Babesia microti using a novel multiplex real-time polymerase chain reaction (PCR) assay, and deer tick virus using reverse transcription-PCR. Habitat type (wooded versus edge) was an important determinant of tick density; however, percent forest cover had little effect. B. burgdorferi was the most commonly detected pathogen and was present in ticks from all sites. Ba. microti and deer tick virus were not detected. Habitat type and dominant land cover type were not significantly related to B. burgdorferi presence or prevalence; however, ticks infected with A. phagocytophilum and B. miyamotoi were collected more often in urban environments. Similarity between B. burgdorferi prevalence in Onondaga County and hyperendemic areas of southeastern NY indicates a more rapid emergence than expected in a relatively naive region. Possible mechanistic processes underlying these observations are discussed.

Journal ArticleDOI
TL;DR: Constant temperature resulted in a higher viral load in the saliva of Ae.
Abstract: Climate strongly influences the geographic distribution and timing of mosquito-borne disease outbreaks. Environmental temperature affects phenotypic traits of mosquitoes including vector competence for arboviruses mediated by changes in infection, extrinsic incubation period and in rates of transmission. Most experiments, however, are done at constant temperatures. In nature, mosquitoes are more likely to experience daily fluctuations in temperature. Here we compare disseminated infection (leg infection) and saliva infection of Aedes aegypti (L.) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) from Florida following oral exposure to an Asian genotype of chikungunya virus emergent in the Americas. We evaluated experimentally the effect of variable temperature regimens on disseminated infection and saliva infection of these Aedes species. Each of three temperature regimes had approximately the same average temperature (27-28°C), but differed in the magnitude of the diurnal temperature range (DTR). The large DTR was 8.0°C (range 23-31°C) and the small DTR was 4.0°C (range 26-30°C) which approximate ranges in different locations of Florida during July-October when risk of transmission is highest. The constant temperature was set at 27°C. Testing three geographic populations of each mosquito species, significant effects on disseminated infection were detected for an interaction between temperature regime and geographic population for both Ae. aegypti and Ae. albopictus. There were no significant treatment effects of temperature, geographic population, or temperature by geographic population interaction on saliva infection for either mosquito species. Constant temperature resulted in a higher viral load in the saliva of Ae. albopictus, but not Ae. aegypti, compared to conditions where the temperature fluctuated.

Journal ArticleDOI
TL;DR: Historical cattle fever tick infestation data, host source data, and geographical data support the continued role of O. virginianus in maintaining reinfestations of R. (B.) microplus and R.(B.) annulatus in South Texas as well as the increasing role of nilgai antelope in cattle Fever tick maintenance and dispersal.
Abstract: The Cattle Fever Tick Eradication Program was the first parasite eradication program of veterinary importance in the United States and is considered to be one of the greatest disease eradication programs of all time. The program's utilization of pasture vacation and dipping of cattle in acaricide has been extremely successful for controlling Rhipicephalus (Boophilus) microplus (Canestrini) and R. (B.) annulatus (Say), collectively known as cattle fever ticks, on cattle along the Texas border with Mexico for decades. However, the increase of white-tailed deer, Odocoileus virginianus (Zimmermann), populations in South Texas over the last 50 yr has compromised the success of the program. R. (B.) microplus and R. (B.) annulatus infestation data have confirmed that O. virginianus can support the maintenance and movement of both species of cattle fever tick within the permanent quarantine or buffer zone in South Texas along the Rio Grande, and also in the cattle fever tick-free area north and east of the buffer zone. Over the last two decades, increasing populations of exotic nilgai antelope, Boselaphus tragocamelus (Pallas), in South Texas have further complicated cattle fever tick eradication efforts. Historical cattle fever tick infestation data, host source data, and geographical data support the continued role of O. virginianus in maintaining reinfestations of R. (B.) microplus and R. (B.) annulatus in South Texas as well as the increasing role of nilgai antelope in cattle fever tick maintenance and dispersal.

Journal ArticleDOI
TL;DR: Eradicating screwworm from continental North American via the sterile insect technique has provided huge economic benefit to livestock producers by eliminating screWWorm myiasis by keeping eradication costs to a minimum.
Abstract: Eradicating screwworm, Cochliomyia hominivorax (Coquerel), from continental North American via the sterile insect technique has provided huge economic benefit to livestock producers by eliminating screwworm myiasis. After confirmatory identification of fly samples from infested deer by the USDA National Veterinary Services Laboratory on September 30, 2016, an alert was issued that screwworm myiasis was discovered in the Florida Keys. Personnel from USDA Animal and Plant Health Inspection Service, Agricultural Research Service, the State of Florida, U.S. Fish and Wildlife Service and local officials responded to the outbreak focus on Big Pine Key. After witnessing infested Key deer (Odocoileus virginianus clavium Barboyr & Allen), screwworm adult sampling was initiated at 0930 h on October 5, 2016 using nets to collect flies arriving at putrid liver, with the first female collected within 1 h. Larval samples were collected from infested animals for DNA analyses and to develop a "Florida outbreak" colony to test mating compatibility with the mass-produced strain used for sterile fly releases. Ground release chambers for sterile screwworm releases were placed in favorable habitats based on satellite image analyses. Sterile pupae were first placed in the chambers on October 11, 2016. Further liver trapping showed that 13 Keys were infested. One case, presumably through animal movement, occurred near Homestead on the Florida mainland. Ultimately there were 35 sterile fly release stations, including 4 located around Homestead, but no further cases were identified. About 188 million sterile flies were released until successful eradication was declared on March 23, 2017. Containing the outbreak prevented economic losses to livestock producers and other wildlife on the mainland and kept eradication costs to a minimum.

Journal ArticleDOI
TL;DR: It is demonstrated that silencing of the two vATPase subunits A and E offers a potential strategy to suppress bed bug populations and that the knockdown of mRNA is highly effective and persistent up to 30 d post injection.
Abstract: The common bed bug, Cimex lectularius L. (Hemiptera: Cimicidae) has resurged as one of the most troublesome household pests affecting people across the globe. Bed bug infestations have increased in recent years primarily due to the evolution of insecticide resistance and the insect's ability to hitchhike with travelers. vATPases are one of the most evolutionarily conserved holoenzymes in eukaryotes, which are mainly involved in proton transport across the plasma membranes and intracellular organelles. RNA interference (RNAi) has been developed as a promising tool for insect control. In this study, we used RNAi as an approach to knock down subunits A and E of the vATPase gene of bed bugs. Delivery of 0.2 µg/insect of dsRNA specific to vATPase-A and vATPase-E into female bed bugs dramatically impaired the laying and viability of eggs over time. Injection of the vATPase-E dsRNA decreased survival of the bed bugs over 30 d. Our results also showed that the knockdown of mRNA is highly effective and persistent up to 30 d post injection. This research demonstrated that silencing of the two vATPase subunits A and E offers a potential strategy to suppress bed bug populations.

Journal ArticleDOI
TL;DR: An expanding range of C. insignis could pose an introduction risk of virus serotypes new to the region and/or increased transmission of circulating endemic serotypes.
Abstract: Haematophagous biting midges of the genus Culicoides are pests of humans, livestock, and wildlife, and some also serve as vectors of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) worldwide. In North America, there are only two Culicoides spp. proven to transmit BTV and/or EHDV-Culicoides (Hoffmania) insignis Lutz (Diptera: Ceratopogonidae) and Culicoides (Monoculicoides) sonorensis Wirth and Jones (Diptera: Ceratopogonidae). Culicoides sonorensis is considered the primary vector due to its wide distribution across much of North America, whereas C. insignis has a neotropical distribution historically limited to peninsular Florida. However, Culicoides surveys conducted 2007 to 2015 have detected the presence of C. insignis in five southeastern states (Florida, Georgia, Alabama, Mississippi, and Louisiana), suggesting C. insignis has or is currently experiencing a northwestward range expansion in the southeastern United States. Because C. insignis has a neotropical distribution and is a known vector of BTV serotypes exotic to North America, an expanding range could pose an introduction risk of virus serotypes new to the region and/or increased transmission of circulating endemic serotypes.

Journal ArticleDOI
TL;DR: Serological findings against the tick-borne pathogens in a group of animal farm workers and indigenous people in Peninsular Malaysia are reported and further investigation is required to ascertain the occurrence of zoonotic transmission of Ehrlichia and Anaplasma infections in Peninular Malaysia.
Abstract: Little information is available on human anaplasmosis and ehrlichiosis in Southeast Asia despite increasing reports of the detection of Anaplasma spp. and Ehrlichia spp. in the ticks. We report herein the serological findings against the tick-borne pathogens in a group of animal farm workers (n = 87) and indigenous people (n = 102) in Peninsular Malaysia. IgG antibodies against Ehrlichia chaffeensis were detected from 29.9% and 34.3% of farm workers and indigenous people, respectively, using commercial indirect immunofluorescence assays. Comparatively, only 6.9% of the indigenous people but none of the animal farm workers were seropositive to Anaplasma phagocytophilum. A polymerase chain reaction (PCR) assay targeting the 16S rRNA gene of Anaplasmataceae was used to identify Anaplastamataceae in ticks collected from various locations adjacent to the areas where the serological survey was conducted. In this study, a total of 61.5% of ticks infesting farm animals, 37.5% of ticks infesting peri-domestic animals in rural villages, 27.3% of ticks collected from wildlife animals, and 29.1% of questing ticks collected from forest vegetation were positive for Anaplasmataceae DNA. Sequence analyses of 16S rRNA gene region (238 bp) provide the identification for Anaplasma marginale, Anaplasma bovis, Anaplasma platys, A. phagocytophilum, and Anaplasma spp. closely related to Candidatus Cryptoplasma californiense in ticks. E. chaffeensis DNA was not detected from any ticks, instead, Ehrlichia sp. strain EBm52, Ehrlichia mineirensis and Candidatus Ehrlichia shimanensis are the only Ehrlichia sp. identified from cattle ticks in this study. Further investigation is required to ascertain the occurrence of zoonotic transmission of Ehrlichia and Anaplasma infections in Peninsular Malaysia.

Journal ArticleDOI
TL;DR: Bed nets alone may not provide sufficient protection against early biting anophelines and should be complemented with additional strategies such as indoor residual spraying (IRS) and larval source management (LSM) to meet the WHO's ambitious goals that are reflected in the global technical malaria strategy for 2030.
Abstract: The biting behavior of anophelines is an important determinant of malaria transmission. Understanding the local vector host-seeking behavior, its outdoor/ indoor biting preference, and nocturnal biting periods is essential for effectively applying and improving vector control methods, such as Long Lasting Insecticidal Nets (LLINs) and personal protective measures. To better understand the biting and host-seeking patterns of Anopheles mosquitoes in Northwestern Burkina Faso, we performed biweekly Human Landing Catches (HLC) in six villages during the period of highest mosquito abundance and malaria transmission. We applied a negative binomial regression framework to statistically analyze the host-seeking activities of Anopheles species and test for differences across hours, months, and villages, as well as for differences between indoor and outdoor capture points. Anopheles gambiae s.l. was identified as the main malaria vector in this region, representing about 90% of the total anopheline population. Biting activity was significantly different across hours and showed a peaked plateau between 2000 and 0200 hours. Differences in the pattern of biting cycles were observed between the early and late rainy season. This study shows that anopheline biting activity in Northwest Burkina Faso is high throughout the night, at indoor and outdoor posts alike. Consequently, bed nets alone may not provide sufficient protection against early biting anophelines and should be complemented with additional strategies such as indoor residual spraying (IRS) and larval source management (LSM) to meet the WHO's ambitious goals that are reflected in the global technical malaria strategy for 2030.

Journal ArticleDOI
TL;DR: C climatic suitability maps indicate that coastal California, especially the northern coast, and the western Sierra Nevada foothills have the highest probability of I. pacificus presence.
Abstract: Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), the primary vector of Lyme disease spirochetes to humans in the far-western United States, is broadly distributed across Pacific Coast states, but its distribution is not uniform within this large, ecologically diverse region. To identify areas of suitable habitat, we assembled records of locations throughout California where two or more I. pacificus were collected from vegetation from 1980 to 2014. We then employed ensemble species distribution modeling to identify suitable climatic conditions for the tick and restricted the results to land cover classes where these ticks are typically encountered (i.e., forest, grass, scrub-shrub, riparian). Cold-season temperature and rainfall are particularly important abiotic drivers of suitability, explaining between 50 and 99% of the spatial variability across California among models. The likelihood of an area being classified as suitable increases steadily with increasing temperatures >0°C during the coldest quarter of the year, and further increases when precipitation amounts range from 400 to 800 mm during the coldest quarter, indicating that areas in California with relatively warm and wet winters typically are most suitable for I. pacificus. Other consistent predictors of suitability include increasing autumn humidity, temperatures in the warmest month between 23 and 33°C, and low-temperature variability throughout the year. The resultant climatic suitability maps indicate that coastal California, especially the northern coast, and the western Sierra Nevada foothills have the highest probability of I. pacificus presence.

Journal ArticleDOI
TL;DR: It is suggested that the close ectoparasite-host relationships could be examined as an additional tool to elucidate the taxonomic relationships between the hosts.
Abstract: This is the first complete assessment of the ectoparasite fauna on phyllostomid bats in a shaded coffee plantation in Mexico. The study was carried out at Finca San Carlos, in the municipality of Tapachula, southeastern Chiapas, Mexico. The bats were captured over three consecutive nights every month, from December 2005 to November 2006, using four mist nets. We captured 192 phyllostomid bats, representing 18 species, upon which 1,971 ectoparasites, belonging to 11 families and 65 species, were found. We found that 160 of the 192 captured bats were hosts to ectoparasites, giving an infestation prevalence of 83.3%. Of the 65 ectoparasitic species, 14 were classified as monoxenous and 17 as stenoxenous. More ectoparasites were recorded in the dry season (n = 1,439) than the wet season (n = 532), and we recorded some families of ectoparasite on particular areas of the bat body. An ordination of bat species, based on their ectoparasitic species community structure, formed groups at the subfamily level or lower taxonomic categories. We suggest that the close ectoparasite-host relationships could be examined as an additional tool to elucidate the taxonomic relationships between the hosts.

Journal ArticleDOI
TL;DR: A. americanum is believed to be the primary vector of both Heartland and BRBVs to humans based upon multiple detections of virus in field-collected ticks, its abundance, and its aggressive feeding behavior on mammals including humans as mentioned in this paper.
Abstract: In June 2016, we continued surveillance for tick-borne viruses in eastern Kansas following upon a larger surveillance program initiated in 2015 in response to a fatal human case of Bourbon virus (BRBV) (Family Orthomyxoviridae: Genus Thogotovirus). In 4 d, we collected 14,193 ticks representing four species from four sites. Amblyomma americanum (L.) (Acari: Ixodidae) accounted for nearly all ticks collected (n = 14,116, 99.5%), and the only other species identified were Amblyomma maculatum Koch (Acari: Ixodidae), Dermacentor variabilis (Say) (Acari: Ixodidae) and Ixodes scapularis Say (Acari: Ixodidae). All ticks were tested for both BRBV and Heartland virus (Family Bunyaviridae: Genus Phlebovirus) in 964 pools. Five Heartland virus positive tick pools were detected and confirmed by real-time reverse transcription PCR (rRT-PCR), while all pools tested negative for BRBV. Each Heartland positive pool was composed of 25 A. americanum nymphs with positive pools collected at three different sites in Bourbon County. A. americanum is believed to be the primary vector of both Heartland and BRBVs to humans based upon multiple detections of virus in field-collected ticks, its abundance, and its aggressive feeding behavior on mammals including humans. However, it is possible that A. americanum encounters viremic vertebrate hosts of BRBV less frequently than viremic hosts of Heartland virus, or that BRBV is less efficiently passed among ticks by co-feeding, or less efficiently passed vertically from infected female ticks to their offspring resulting in lower field infection rates.

Journal ArticleDOI
TL;DR: S. iyengari could be a potential vector of L. siamensis infection among humans, and sand fly species confirmed using PCR encompassing regions within the mitochondrial DNA.
Abstract: In Thailand, leishmaniasis is an emerging vector-borne disease that has become a public health concern. In related epidemiological surveys to identify potential Leishmania vectors in the affected areas, DNA of Leishmania martiniquensis (Kinetoplastida: Trypanosomatidae) was detected in Sergentomyia (Neophebotomus) gemmea (Diptera: Psychodidae) and Sergentomyia (Parrotomyia) barraudi (Diptera: Psychodidae). Recently, a more elaborate study was conducted in the same areas that included sand fly species identification, screening sand flies for the presence of Leishmania DNA and blood meal analysis to identify potential reservoir hosts directed toward assessing the risk of human infection. Twenty-nine archived pools of sand flies collected in Hat Samran District, Trang Province were used in this study. Sand fly species were confirmed using PCR encompassing regions within the mitochondrial DNA. Leishmania DNA was detected using PCR of the heat shock protein 70 region (hsp70-PCR) and blood meal identification was performed using PCR of the cyt b gene of vertebrate mitochondrial DNA (cytb-nd1-PCR) and human-specific AluYb8 repeat (AluYb8-PCR). Four sand fly species were confirmed, i.e., Phlebotomus (Anaphlebotomus) stantoni (Diptera: Psychodidae), S. barraudi, Sergentomyia (Neophlebotomus) iyengari (Diptera: Psychodidae), and S. gemmea. Leishmania siamensis was detected in one female S. iyengari. Only human blood was detected in P. stantoni and S. gemmea, while both sun skink (Mabuya multifasciata) and human blood were detected in S. iyengari. In this study, we showed that S. iyengari could be a potential vector of L. siamensis infection among humans.

Journal ArticleDOI
TL;DR: It is suggested that conversion of natural habitats to residential and agricultural land increases mosquito larval habitats, increasing the abundance of Ae.
Abstract: Vector abundance plays a key role in transmission of mosquito-borne disease. In Hawaii, Aedes albopictus (Skuse) (Diptera: Culicidae), the Asian tiger mosquito, has been implicated in locally-transmitted dengue outbreaks, while Culex quinquefasciatus Say (Diptera: Culicidae), the southern house mosquito, is the primary vector of avian malaria, a wildlife disease that has contributed to declines and extinctions of native Hawaiian birds. Despite the importance of these introduced species to human and wildlife health, little is known about the local-scale drivers that shape mosquito abundance across lowland Hawaii, where forest, agricultural, and residential land uses are prevalent. We examined landscape, larval habitat, and climate drivers of Ae. albopictus and Cx. quinquefasciatus abundance in eight lowland wet forest fragments on the Big Island of Hawaii. We found that the abundance of both species increased with the proportion of surrounding developed land and the availability of larval habitat, which were themselves correlated. Our findings suggest that conversion of natural habitats to residential and agricultural land increases mosquito larval habitats, increasing the abundance of Ae. albopictus and Cx. quinquefasciatus and increasing disease risk to humans and wildlife in Hawaii. Our results further indicate that while source reduction of artificial larval habitats-particularly moderately-sized human-made habitats including abandoned cars and tires-could reduce mosquito abundance, eliminating larval habitat will be challenging because both species utilize both natural and human-made larval habitats in lowland Hawaii.

Journal ArticleDOI
TL;DR: Differences in the behavior and biology between these two mice species may contribute to the variation observed in the abundance of host-attached ticks and pathogen prevalence and highlight a potential hazard of the failure to differentiate between these visually similar mice.
Abstract: Two species of mice, the white-footed mouse, Peromyscus leucopus (Rafinesque; Rodentia: Cricetidae) and the woodland deer mouse, Peromyscus maniculatus (Wagner; Rodentia: Cricetidae), serve as reservoirs of tick-borne pathogens in many parts of North America. However, the role P. maniculatus plays in the amplification and maintenance of Anaplasma phagocytophilum (Rickettsiales: Ehrlichiaceae) and Borrelia burgdorferi (Spirochaetales: Spirochaetaceae) is not well understood. In northern Wisconsin, from 2012 to 2014, 560 unique mice were captured at 83 sites distributed across five forests. P. leucopus was more likely infested with immature Ixodes scapularis compared to P. maniculatus (60.1 vs. 28.3%). Abundance of immature I. scapularis on P. leucopus (M = 2.69; SD = 3.53) was surprisingly low and even lower for P. maniculatus (M = 0.717; SD = 1.44). Both P. leucopus and P. maniculatus were infected with B. burgdorferi, 24.0 and 16.8%, respectively. The prevalence of A. phagocytophilum infection in P. leucopus (1.69%) was similar to that observed in P. maniculatus (4.73%). Nine of 10 mice co-infected with both pathogens were P. maniculatus, and there were more co-infections in this species than expected by chance (3.07 vs. 0.82%). Differences in the behavior and biology between these two mice species may contribute to the variation observed in the abundance of host-attached ticks and pathogen prevalence. These differences highlight a potential hazard of the failure to differentiate between these visually similar mice, but there is evidence that these two mice species can each serve as reservoirs for tick-borne pathogens that cause human disease in Wisconsin.

Journal ArticleDOI
TL;DR: The presence of Leishmania DNA in sand flies fed with human blood and domestic animals in villages with transmission of VL and TL suggests that transmission could be occurring in the locations of the infected patients.
Abstract: To elucidate portions of the transmission cycles of American tegumentary leishmaniasis (TL) and visceral leishmaniasis (VL) occurring in the region surrounding the Lencois Maranhenses National Park, an important tourist center in Brazil, the present study objectives were to determine the rate of natural infection by Leishmania spp. and the blood meal in caught sand flies species in the region. Sand flies were captured over 36 mo in 62 locations of the municipality of Barreirinhas, Maranhao with notifications of disease incidence. Species identification of parasites was performed with internal transcribed spacer 1 (ITS1) PCR-RFLP using HaeIII enzyme. Blood meal identification was performed with cytochrome b (cytb) gene PCR-RFLP using HaeIII and MboI enzyme. The species Lutzomyia longipalpis (Lutz and Neiva 1912) presented a positivity rate of 3.7% for Leishmania infantum. Species not considered vectors of this parasite such as Lu. lenti (Mangabeira 1938) and Lu. whitmani (Antunes & Coutinho 1939) showed infection rates of 0.6% and 0.9%, respectively. Among the vectors of Leishmania spp. was Lu. whitmani with detection rate of 0.3% for Le. braziliensis and Lu. flaviscutellata (Mangabeira 1942) with a detection rate of 8% for Le. amazonensis. After restriction of amplification product encoding a 359bp sequence of the cytb recognized in as follows: pigs (37.9%); dogs (27.4%); chickens (20.9%); horses (9%), rodents (3.3%), and humans (1.4%). The presence of Leishmania DNA in sand flies fed with human blood and domestic animals in villages with transmission of VL and TL suggests that transmission could be occurring in the locations of the infected patients.

Journal ArticleDOI
TL;DR: Aedes (Stegomyia) albopictus (Skuse), the Asian tiger mosquito, is one of the most widespread invasive vector-borne disease insect in tropical and temperate zones and has spread to six countries.
Abstract: Aedes (Stegomyia) albopictus (Skuse), (Diptera: Culicidae), the Asian tiger mosquito, is one of the most widespread invasive vector-borne disease insect in tropical and temperate zones. This species has invaded the Americas over the past 3 decades and has spread to six countries. We report Ae. albopictus in Guayaquil city, the first time it has been identified in Ecuador. Outdoor BG-Sentinel traps without lures collected a total of 21 Ae. albopictus.

Journal ArticleDOI
TL;DR: Large males continued spermatogenesis well after 10-d post-eclosion (dpe), augmenting their reserves by 39% and small males stopped producing sperm at 10 dpe, contributing to a deeper understanding of Ae.
Abstract: Aedes albopictus (Skuse) (Diptera: Culicidae) is a vector of several arboviruses impacting human health, including dengue, chikungunya, and potentially Zika. Vector control strategies that deploy modified males into the field are in use or under development and require a solid understanding of male biology; unfortunately, there has been limited effort to understand male Ae. albopictus reproductive biology, including sperm production and capacity. We tested whether body size and age affect spermatogenesis in Ae. albopictus. In general, older and larger males produced more sperm than their younger or smaller counterparts. Large males continued spermatogenesis well after 10-d post-eclosion (dpe), augmenting their reserves by 39%. By contrast, small males stopped producing sperm at 10 dpe. These results contribute to a deeper understanding of Ae. albopictus reproductive physiology. We discuss the usefulness of these findings in the context of Ae. albopictus life history and their utility in optimizing male mosquito release strategies.

Journal ArticleDOI
TL;DR: The results suggest that Aj4il abundance is more sensitive to temperature changes in kurtosis than mean values, potentially limiting the predictive ability of Ae.
Abstract: The Asian Bush Mosquito, Aedes (Finlaya) japonicus japonicus (Theobald) is an important globally invasive mosquito species. In comparison with other major invasive mosquitoes, relatively little is known about Ae. j. japonicus population dynamics in the field. Here, we present results from a 54-biweek long study of Ae. j. japonicus abundance in ovitraps set across the altitudinal gradient of Mt. Konpira, Nagasaki, Japan. Spatially, we found that Ae. j. japonicus fourth instar larvae (Aj4il) were more abundant at the base and top of Mt. Konpira and in ovitraps with more platykurtic water temperature (WT) distributions. In contrast, we found that temporally Aj4il were more abundant when ovitrap WT was more leptokurtic with 2 weeks of lag, and with high relative humidity SD with 2 months of lag. We also found that Aj4il were unlikely present when ovitrap WT was below 12.41°C. Parameter estimates for the Ricker model suggested that Ae. j. japonicus population growth was under density-dependence regulation, with a stable population dynamics whose fluctuations were associated with changes in ovitrap WT kurtosis and demographic stochasticity. Our results suggest that Aj4il abundance is more sensitive to temperature changes in kurtosis than mean values, potentially limiting the predictive ability of Ae. j. japonicus niche models based on the increase of average temperatures with global warming, and suggesting this mosquito species has a relatively coarse-grained response to temperature changes.

Journal ArticleDOI
TL;DR: It is emphasized that most of Mexico has environmental conditions that potentially allow the survival of Ae.
Abstract: The Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), is an invasive species and a vector of numerous human pathogens, including chikungunya, dengue, yellow fever, and Zika viruses. This mosquito had been reported from 36 geographic locations in Mexico by 2005, increasing to 101 locations by 2010 and 501 locations (spanning 16 states) by 2016. Here we modeled the occupied niche for Ae. albopictus in Mexico to characterize the environmental conditions related to its presence, and to generate updated environmental suitability maps. The predictors with the greatest contribution to characterizing the occupied niche for Ae. albopictus were NDVI and annual mean temperature. We also estimated the environmental suitability for Ae. albopictus in regions of the country where it has not been documented yet, by means of: 1) transferring its occupied niche model to these regions and 2) modeling its fundamental niche using global data. Our models will help vector control and public health institutions to identify areas where Ae. albopictus has not yet been recorded but where it may be present. We emphasize that most of Mexico has environmental conditions that potentially allow the survival of Ae. albopictus, which underscores the need for systematic mosquito monitoring in all states of the country.

Journal ArticleDOI
TL;DR: The study concluded that increased urbanization, insufficient water supply and inefficient removal of urban trash resulted in increased numbers of nonbiodegradable containers around human dwellings, thereby creating ideal breeding habitats for Ae.
Abstract: Aedes aegypti (L.) and Aedes albopictus (Skuse) are known vectors of dengue, chikungunya, and other pathogens; however, their ecology and role in virus transmission has not been well studied in Pakistan. Here, we report on an intensive survey of potential breeding sites of Ae. aegypti in Rawalpindi, Punjab Province, Pakistan. The study continued for 11 mo and was divided into three seasons: January to June (pre-monsoon), July to September (monsoon), and October-November (post-monsoon). Larval mosquitoes were collected from all wet containers present in and around the houses. Altogether 5,570,418, 2,930,508, and 1,507,111 water-filled containers were examined during each season, of which 2,703, 8,843, and 3,439 were found positive for Ae. aegypti larvae or pupae, yielding Breteau indices of 0.46, 2.92, and 1.99%, respectively. Among 14 container types examined, the breeding preference ratio during all seasons was highest for roof-top water tanks and room evaporative coolers, followed by discarded tires and urban trash. The study concluded that increased urbanization, insufficient water supply and inefficient removal of urban trash resulted in increased numbers of nonbiodegradable containers around human dwellings, thereby creating ideal breeding habitats for Ae. aegypti. Measures such as integrated vector management, minimization of the breeding potential of Ae. aegypti by water management, proper disposal of discarded tires and urban trash, and health education were recommended for control of Ae. aegypti.