scispace - formally typeset
Search or ask a question

Showing papers in "Journal of the International Society of Sports Nutrition in 2004"


Journal ArticleDOI
TL;DR: This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition.
Abstract: Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients.

426 citations


Journal ArticleDOI
TL;DR: Dietary strategies used by athletes, including the use of various dietary supplements (sports supplements), which they presume to be effective, safe and legal are described.
Abstract: Sports success is dependent primarily on genetic endowment in athletes with morphologic, psychologic, physiologic and metabolic traits specific to performance characteristics vital to their sport. Such genetically-endowed athletes must also receive optimal training to increase physical power, enhance mental strength, and provide a mechanical advantage. However, athletes often attempt to go beyond training and use substances and techniques, often referred to as ergogenics, in attempts to gain a competitive advantage. Pharmacological agents, such as anabolic steroids and amphetamines, have been used in the past, but such practices by athletes have led to the establishment of anti-doping legislation and effective testing protocols to help deter their use. Thus, many athletes have turned to various dietary strategies, including the use of various dietary supplements (sports supplements), which they presume to be effective, safe and legal.

87 citations


Journal ArticleDOI
TL;DR: Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states.
Abstract: During very low carbohydrate intake, the regulated and controlled production of ketone bodies causes a harmless physiological state known as dietary ketosis. Ketone bodies flow from the liver to extra-hepatic tissues (e.g., brain) for use as a fuel; this spares glucose metabolism via a mechanism similar to the sparing of glucose by oxidation of fatty acids as an alternative fuel. In comparison with glucose, the ketone bodies are actually a very good respiratory fuel. Indeed, there is no clear requirement for dietary carbohydrates for human adults. Interestingly, the effects of ketone body metabolism suggest that mild ketosis may offer therapeutic potential in a variety of different common and rare disease states. Also, the recent landmark study showed that a very-low-carbohydrate diet resulted in a significant reduction in fat mass and a concomitant increase in lean body mass in normal-weight men. Contrary to popular belief, insulin is not needed for glucose uptake and utilization in man. Finally, both muscle fat and carbohydrate burn in an amino acid flame.

74 citations


Journal ArticleDOI
TL;DR: The role of arginine in the secretion of endogenous growth hormone, its involvement in the synthesis of creatine, and its role in augmenting nitric oxide in athletes will be discussed.
Abstract: Arginine is a conditionally essential amino acid that is involved in protein synthesis, the detoxification of ammonia, and its conversion to glucose as well as being catabolized to produce energy. In addition to these physiological functions, arginine has been purported to have ergogenic potential. Athletes have taken arginine for three main reasons: 1) its role in the secretion of endogenous growth hormone; 2) its involvement in the synthesis of creatine; 3) its role in augmenting nitric oxide. These aspects of arginine supplementation will be discussed as well as a review of clinical investigations involving exercise performance and arginine ingestion.

63 citations


Journal ArticleDOI
TL;DR: Examination of whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations indicates that ZMA supplementation does not appear to enhance training adaptations in resistance trained populations.
Abstract: This study examined whether supplementing the diet with a commercial supplement containing zinc magnesium aspartate (ZMA) during training affects zinc and magnesium status, anabolic and catabolic hormone profiles, and/or training adaptations. Forty-two resistance trained males (27 ± 9 yrs; 178 ± 8 cm, 85 ± 15 kg, 18.6 ± 6% body fat) were matched according to fat free mass and randomly assigned to ingest in a double blind manner either a dextrose placebo (P) or ZMA 30–60 minutes prior to going to sleep during 8-weeks of standardized resistance-training. Subjects completed testing sessions at 0, 4, and 8 weeks that included body composition assessment as determined by dual energy X-ray absorptiometry, 1-RM and muscular endurance tests on the bench and leg press, a Wingate anaerobic power test, and blood analysis to assess anabolic/catabolic status as well as markers of health. Data were analyzed using repeated measures ANOVA. Results indicated that ZMA supplementation non-significantly increased serum zinc levels by 11 – 17% (p = 0.12). However, no significant differences were observed between groups in anabolic or catabolic hormone status, body composition, 1-RM bench press and leg press, upper or lower body muscular endurance, or cycling anaerobic capacity. Results indicate that ZMA supplementation during training does not appear to enhance training adaptations in resistance trained populations.

46 citations


Journal ArticleDOI
TL;DR: There is no scientific evidence whatsoever that high-protein intake has adverse effects on liver function, and there is little if any scientific evidence supporting AHA Nutrition Committee's statement on dietary protein and weight reduction.
Abstract: Results of several recent studies show that high-protein, low-carbohydrate weight loss diets indeed have their benefits. However, agencies such as the American Heart Association (AHA) have some concerns about possible health risks. The purpose of this review is to evaluate the scientific validity of AHA Nutrition Committee's statement on dietary protein and weight reduction (St. Jeor ST et al. Circulation 2001;104:1869–1874), which states: "Individuals who follow these [high-protein] diets are risk for ... potential cardiac, renal, bone, and liver abnormalities overall. Simply stated, there is no scientific evidence whatsoever that high-protein intake has adverse effects on liver function. Relative to renal function, there are no data in the scientific literature demonstrating that healthy kidneys are damaged by the increased demands of protein consumed in quantities 2–3 times above the Recommended Dietary Allowance (RDA). In contrast with the earlier hypothesis that high-protein intake promotes osteoporosis, some epidemiological studies found a positive association between protein intake and bone mineral density. Further, recent studies studies suggest, at least in the short term, that RDA for protein (0.8 g/kg) does not support normal calcium homeostasis. Finally, a negative correlation has been shown between protein intake and systolic and diastolic blood pressures in several epidemiological surveys. In conclusion, there is little if any scientific evidence supporting above mentioned statement. Certainly, such public warnings should be based on a thorough analysis of the scientific literature, not unsubstantiated fears and misrepresentations. For individuals with normal renal function, the risks are minimal and must be balanced against the real and established risk of continued obesity.

21 citations


Journal ArticleDOI
TL;DR: The purpose of this review was to evaluate the current literature on the effects of dietary protein and resistance training on the expression of the myosin heavy chain.
Abstract: During resistance training the muscle undergoes many changes. Possibly the most profound and significant changes are those that occur in the muscles contractile proteins. Increases in these contractile proteins are one of the primary factors contributing to myofibrillar hypertrophy. The most abundant muscle protein is myosin, which comprises 25% of the total muscle protein. Due to the large amount of skeletal muscle that is composed of myosin, changes in this fiber may have profound effects on skeletal muscle size and strength. The myosin molecule is made up of 6 subunits, 2 very large heavy chains, and 4 smaller light chains. The myosin heavy chain (MHC) accounts for 25–30% of all muscle proteins making its size an important factor in skeletal muscle growth. In conjunction with resistance training, dietary protein intake must be adequate to illicit positive adaptations. Although many studies have evaluated the role of dietary protein intake on skeletal muscle changes, few have evaluated the MHC specifically. Research has clearly defined the need for dietary protein and resistance training to facilitate positive changes in skeletal muscle. The purpose of this review was to evaluate the current literature on the effects of dietary protein and resistance training on the expression of the myosin heavy chain.

20 citations


Journal ArticleDOI
TL;DR: The ideal weight loss diet, if it even exists, remains to be determined, but a high-carbohydrate/low-protein diet may be unsatisfactory for many obese individuals.
Abstract: The first law of thermodynamics dictates that body mass remains constant when caloric intake equals caloric expenditure. It should be noted, however, that different diets lead to different biochemical pathways that are not equivalent when correctly compared through the laws of thermodynamics. It is inappropriate to assume that the only thing that counts in terms of food consumption and energy balance is the intake of dietary calories and weight storage. Well-controlled studies suggest that calorie content may not be as predictive of fat loss as is reduced carbohydrate consumption. Biologically speaking, a calorie is certainly not a calorie. The ideal weight loss diet, if it even exists, remains to be determined, but a high-carbohydrate/low-protein diet may be unsatisfactory for many obese individuals.

17 citations


Journal ArticleDOI
TL;DR: The future of sports nutrition will dictate that the authors collectively strive for a higher standard of care and education for counseling athletes and 2) integrate different disciplines.
Abstract: The field of sports nutrition is a dynamic one. Core competencies in exercise physiology, psychology, integrated metabolism and biochemistry are the initial parameters for a successful career in sports nutrition. In addition to the academic fundamentals, it is imperative that the sports nutritionist understand the sport in which our client participates. This sport specific understanding should manifest itself in fuel utilization, mechanics of movement, as well as psychological processes that motivate the participant to perform optimally. Sports nutrition as a field has grown substantially over the past 50 years, from glycogen loading to today's scientifically validated ergogenic aids. The last ten years has seen the largest advancement of sports nutrition, with the following areas driving much of the research: the effects of exercise on protein utilization, meal timing to maximize the anabolic response, the potential for ribose to benefit those engaged in high-energy repetitive sports, and creatine and its uses within athletics and medicine. The future of sports nutrition will dictate that we 1) collectively strive for a higher standard of care and education for counseling athletes and 2) integrate different disciplines. We are in an era of unprecedented growth and the new knowledge is constantly evolving. The International Society of Sports Nutrition (ISSN) will contribute to this exciting field in many ways, and we ask for your contribution by sharing your passion, stories, research, and life experiences with us.

6 citations


Journal ArticleDOI
TL;DR: The authors have looked at the warning letters, statutes, regulations, and media reports to analyze the legal grounds and standards upon which FDA acted against androstenedione and question the appropriateness of the action taken.
Abstract: On March 11, 2004, the Food and Drug Administration (FDA) pronounced that dietary supplement products containing androstenedione were adulterated new dietary ingredients under the Dietary Supplement Health and Education Act of 1994 (DSHEA). The FDA issued a press release, held a news conference, and sent warning letters to 23 companies that had manufactured, marketed or distributed the products containing androstenedione. In its warning letters, FDA threatened possible enforcement actions for noncompliance. The authors have looked at the warning letters, statutes, regulations, and media reports to analyze the legal grounds and standards upon which FDA acted against androstenedione and question the appropriateness of the action taken. They have also looked at the negative impact that FDA's lack of communication and cooperation with Industry is having upon the fitness nutrition industry and the marketing of dietary supplements containing new dietary ingredients. The authors also suggest what might be done to ameliorate this escalating problem including more cooperation between FDA and Industry and more research into the benefits and use of supplement products.