scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Translational Medicine in 2022"


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the endothelial function in 30 post-COVID syndrome patients with persistent fatigue and exertion intolerance as well as in 15 age-and sex matched seronegative healthy controls (HCs).
Abstract: Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS.We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers.Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs.A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups.

68 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the relationship between SARS-CoV-2 and auto-immunity in post-COVID syndrome (PCS) and found that auto-munity is characteristic of PCS, and latent auto-IMM correlates with humoral response to SARS.
Abstract: Autoimmunity has emerged as a characteristic of the post-COVID syndrome (PCS), which may be related to sex. In order to further investigate the relationship between SARS-CoV-2 and autoimmunity in PCS, a clinical and serological assessment on 100 patients was done. Serum antibody profiles against self-antigens and infectious agents were evaluated by an antigen array chip for 116 IgG and 104 IgM antibodies. Thirty pre-pandemic healthy individuals were included as a control group. The median age of patients was 49 years (IQR: 37.8 to 55.3). There were 47 males. The median post-COVID time was 219 (IQR: 143 to 258) days. Latent autoimmunity and polyautoimmunity were found in 83% and 62% of patients, respectively. Three patients developed an overt autoimmune disease. IgG antibodies against IL-2, CD8B, and thyroglobulin were found in more than 10% of the patients. Other IgG autoantibodies, such as anti-interferons, were positive in 5-10% of patients. Anti-SARS-CoV-2 IgG antibodies were found in > 85% of patients and were positively correlated with autoantibodies, age, and body mass index (BMI). Few autoantibodies were influenced by age and BMI. There was no effect of gender on the over- or under-expression of autoantibodies. IgG anti-IFN-λ antibodies were associated with the persistence of respiratory symptoms. In summary, autoimmunity is characteristic of PCS, and latent autoimmunity correlates with humoral response to SARS-CoV-2.

61 citations


Journal ArticleDOI
TL;DR: A review of the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases can be found in this article , where the authors elaborate the different strategies used to manipulate the gut microbiota.
Abstract: The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.

58 citations


Journal ArticleDOI
TL;DR: In this article , the authors investigated the endothelial function in 30 post-COVID syndrome patients with persistent fatigue and exertion intolerance as well as in 15 age-and sex matched seronegative healthy controls (HCs).
Abstract: Fatigue, exertion intolerance and post-exertional malaise are among the most frequent symptoms of Post-COVID Syndrome (PCS), with a subset of patients fulfilling criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). As SARS-CoV-2 infects endothelial cells, causing endotheliitis and damaging the endothelium, we investigated endothelial dysfunction (ED) and endothelial biomarkers in patients with PCS.We studied the endothelial function in 30 PCS patients with persistent fatigue and exertion intolerance as well as in 15 age- and sex matched seronegative healthy controls (HCs). 14 patients fulfilled the diagnostic criteria for ME/CFS. The other patients were considered to have PCS. Peripheral endothelial function was assessed by the reactive hyperaemia index (RHI) using peripheral arterial tonometry (PAT) in patients and HCs. In a larger cohort of patients and HCs, including post-COVID reconvalescents (PCHCs), Endothelin-1 (ET-1), Angiopoietin-2 (Ang-2), Endocan (ESM-1), IL-8, Angiotensin-Converting Enzyme (ACE) and ACE2 were analysed as endothelial biomarkers.Five of the 14 post-COVID ME/CFS patients and five of the 16 PCS patients showed ED defined by a diminished RHI (< 1.67), but none of HCs exhibited this finding. A paradoxical positive correlation of RHI with age, blood pressure and BMI was found in PCS but not ME/CFS patients. The ET-1 concentration was significantly elevated in both ME/CFS and PCS patients compared to HCs and PCHCs. The serum Ang-2 concentration was lower in both PCS patients and PCHCs compared to HCs.A subset of PCS patients display evidence for ED shown by a diminished RHI and altered endothelial biomarkers. Different associations of the RHI with clinical parameters as well as varying biomarker profiles may suggest distinct pathomechanisms among patient subgroups.

58 citations


Journal ArticleDOI
TL;DR: A review of the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases can be found in this article , where the authors elaborate the different strategies used to manipulate the gut microbiota.
Abstract: The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.

55 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the relationship between SARS-CoV-2 and auto-immunity in post-COVID syndrome (PCS) and found that auto-munity is characteristic of PCS, and latent auto-IMM correlates with humoral response to SARS.
Abstract: Autoimmunity has emerged as a characteristic of the post-COVID syndrome (PCS), which may be related to sex. In order to further investigate the relationship between SARS-CoV-2 and autoimmunity in PCS, a clinical and serological assessment on 100 patients was done. Serum antibody profiles against self-antigens and infectious agents were evaluated by an antigen array chip for 116 IgG and 104 IgM antibodies. Thirty pre-pandemic healthy individuals were included as a control group. The median age of patients was 49 years (IQR: 37.8 to 55.3). There were 47 males. The median post-COVID time was 219 (IQR: 143 to 258) days. Latent autoimmunity and polyautoimmunity were found in 83% and 62% of patients, respectively. Three patients developed an overt autoimmune disease. IgG antibodies against IL-2, CD8B, and thyroglobulin were found in more than 10% of the patients. Other IgG autoantibodies, such as anti-interferons, were positive in 5-10% of patients. Anti-SARS-CoV-2 IgG antibodies were found in > 85% of patients and were positively correlated with autoantibodies, age, and body mass index (BMI). Few autoantibodies were influenced by age and BMI. There was no effect of gender on the over- or under-expression of autoantibodies. IgG anti-IFN-λ antibodies were associated with the persistence of respiratory symptoms. In summary, autoimmunity is characteristic of PCS, and latent autoimmunity correlates with humoral response to SARS-CoV-2.

51 citations


Journal ArticleDOI
TL;DR: A review of patient-derived Xenograft models development procedures, drug development applications in various cancers, challenges and limitations is presented in this article , where the authors present a set of features that have made it a reliable model along with the development of humanized models.
Abstract: The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.

38 citations


Journal ArticleDOI
TL;DR: A review of patient-derived Xenograft models development procedures, drug development applications in various cancers, challenges and limitations is presented in this paper , where the authors present a set of features that have made it a reliable model along with the development of humanized models.
Abstract: The establishing of the first cancer models created a new perspective on the identification and evaluation of new anti-cancer therapies in preclinical studies. Patient-derived xenograft models are created by tumor tissue engraftment. These models accurately represent the biology and heterogeneity of different cancers and recapitulate tumor microenvironment. These features have made it a reliable model along with the development of humanized models. Therefore, they are used in many studies, such as the development of anti-cancer drugs, co-clinical trials, personalized medicine, immunotherapy, and PDX biobanks. This review summarizes patient-derived xenograft models development procedures, drug development applications in various cancers, challenges and limitations.

34 citations


Journal ArticleDOI
TL;DR: A review of recent advances in NK cell immunotherapy can be found in this article , focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives.
Abstract: As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.

33 citations


Journal ArticleDOI
TL;DR: In this article , the authors take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.
Abstract: Nanocarriers as drug/biomolecule delivery systems have been significantly developed during recent decades. Given the stability, reasonable delivery efficiency, and safety of nanocarriers, there are several barriers in the fulfillment of successful clinical application of these delivery systems. These challenges encouraged drug delivery researchers to establish innovative nanocarriers with longer circulation time, high stability, and high compatibility. Exosomes are extracellular nanometer-sized vesicles released through various cells. These vesicles serve as nanocarriers, possessing great potential to overcome some obstacles encountered in gene and drug delivery due to their natural affinity to recipient cells and the inherent capability to shuttle the genes, lipids, proteins, and RNAs between cells. So far, there has been a lot of valuable research on drug delivery by exosomes, but research on RNA delivery, especially mRNA, is very limited. Since mRNA-based vaccines and therapies have recently gained particular prominence in various diseases, it is essential to find a suitable delivery system due to the large size and destructive nature of these nucleic acids. That's why we're going to take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.

32 citations


Journal ArticleDOI
TL;DR: In this article , the causal relationship between physical activity (PA) and COVID-19 susceptibility, hospitalization and severity using a Mendelian randomization study was explored. But the causal effects were estimated with inverse variance weighted, MR-Egger, weighted median and MR-PRESSO.
Abstract: The 2019 coronavirus disease pandemic (COVID-19) poses an enormous threat to public health worldwide, and the ensuing management of social isolation has greatly decreased opportunities for physical activity (PA) and increased opportunities for leisure sedentary behaviors (LSB). Given that both PA and LSB have been established as major influencing factors for obesity, diabetes and cardiometabolic syndrome, whether PA/LSB in turn affects the susceptibility to COVID-19 by disrupting metabolic homeostasis remains to be explored. In this study, we aimed to systematically evaluate the causal relationship between PA/LSB and COVID-19 susceptibility, hospitalization and severity using a Mendelian randomization study.Data were obtained from a large-scale PA dataset (N = 377,000), LSB dataset (N = 422,218) and COVID-19 Host Genetics Initiative (N = 2,586,691). The causal effects were estimated with inverse variance weighted, MR-Egger, weighted median and MR-PRESSO. Sensitivity analyses were implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis and the funnel plot. Risk factor analyses were further conducted to investigate the potential mediators.Genetically predicted accelerometer-assessed PA decreased the risk for COVID-19 hospitalization (OR = 0.93, 95% CI 0.88-0.97; P = 0.002), while leisure television watching significantly increased the risk of COVID-19 hospitalization (OR = 1.55, 95% CI 1.29-1.88; P = 4.68 × 10-6) and disease severity (OR = 1.85, 95% CI 1.33-2.56; P = 0.0002) after Bonferroni correction. No causal effects of self-reported moderate to vigorous physical activity (MVPA), accelerometer fraction of accelerations > 425 milligravities, computer use or driving on COVID-19 progression were observed. Risk factor analyses indicated that the above causal associations might be mediated by several metabolic risk factors, including smoking, high body mass index, elevated serum triglyceride levels, insulin resistance and the occurrence of type 2 diabetes.Our findings supported a causal effect of accelerometer-assessed PA on the reduced risk of COVID-19 hospitalization as well as television watching on the increased risk of COVID-19 hospitalization and severity, which was potentially mediated by smoking, obesity and type 2 diabetes-related phenotypes. Particular attention should be given to reducing leisure sedentary behaviors and encouraging proper exercise during isolation and quarantine for COVID-19.

Journal ArticleDOI
TL;DR: In this paper , the authors take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.
Abstract: Nanocarriers as drug/biomolecule delivery systems have been significantly developed during recent decades. Given the stability, reasonable delivery efficiency, and safety of nanocarriers, there are several barriers in the fulfillment of successful clinical application of these delivery systems. These challenges encouraged drug delivery researchers to establish innovative nanocarriers with longer circulation time, high stability, and high compatibility. Exosomes are extracellular nanometer-sized vesicles released through various cells. These vesicles serve as nanocarriers, possessing great potential to overcome some obstacles encountered in gene and drug delivery due to their natural affinity to recipient cells and the inherent capability to shuttle the genes, lipids, proteins, and RNAs between cells. So far, there has been a lot of valuable research on drug delivery by exosomes, but research on RNA delivery, especially mRNA, is very limited. Since mRNA-based vaccines and therapies have recently gained particular prominence in various diseases, it is essential to find a suitable delivery system due to the large size and destructive nature of these nucleic acids. That's why we're going to take a look at the unique features of exosomes and their isolation and loading methods, to embrace this idea that exosome-mediated mRNA-based therapies would be introduced as a very efficient strategy in disease treatment within the near future.

Journal ArticleDOI
TL;DR: In this article , a Mendelian randomization (MR) study was conducted to evaluate the relationship between genetically increased serum 25OHD levels and increased risk of multiple sclerosis (MS) in European populations.
Abstract: Observational studies and previous Mendelian randomization (MR) studies have shown that genetically low 25-hydroxyvitamin D (25OHD) levels are associated with a high susceptibility to multiple sclerosis (MS). The present MR study aims to update the causal estimates for the effects of 25OHD levels on MS risk.To date, the largest genome-wide association study (GWAS) for serum 25OHD (n = 401,460) and MS (14,498 MS cases and 24,091 controls) was used to assess the effect of serum 25OHD levels on MS. All participants were of European ancestry. The MR-egger_intercept test and Cochran's Q statistic were used to determine the pleiotropy and the heterogeneity, respectively. MR-egger, weighted median, inverse variance weighted (multiplicative random effects), simple mode, and weighted mode methods were used to evaluate the causal association of serum 25OHD levels with MS. Finally, the effect of a single 25OHD SNP (single nucleotide polymorphism) on MS was used to test the SNP bias.One hundred and fifteen newly identified serum 25OHD genetic variants were extracted from a large-scale serum 25OHD GWAS dataset. The 20 most effective and independent 25OHD genetic instrumental variables were extracted from the MS GWAS summary statistics. Pleiotropy analysis suggested no significant pleiotropic variant among the 20 selected 25OHD genetic instrument variants in MS GWAS datasets. As serum levels of 25OHD based on genetic changes increased, the risk of MS decreased using MR-egger (Beta = - 0.940, p = 0.001; OR = 0.391), weighted median (Beta = - 0.835, p = 0.000; OR = 0.434), IVW (Beta = - 0.781, p = 0.000; OR = 0.458), simple mode (Beta = - 1.484, p = 0.016; OR = 0.227), and weighted mode (Beta = - 0.913, p = 0.000; OR = 0.401). Our results were robust, with no obvious bias based on investigating the single 25OHD SNP on MS.Our analysis suggested a causal association between genetically increased serum 25OHD levels and reduced MS in the European population.

Journal ArticleDOI
TL;DR: A review of recent advances in NK cell immunotherapy can be found in this article , focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives.
Abstract: As a promising alternative platform for cellular immunotherapy, natural killer cells (NK) have recently gained attention as an important type of innate immune regulatory cell. NK cells can rapidly kill multiple adjacent cancer cells through non-MHC-restrictive effects. Although tumors may develop multiple resistance mechanisms to endogenous NK cell attack, in vitro activation, expansion, and genetic modification of NK cells can greatly enhance their anti-tumor activity and give them the ability to overcome drug resistance. Some of these approaches have been translated into clinical applications, and clinical trials of NK cell infusion in patients with hematological malignancies and solid tumors have thus far yielded many encouraging clinical results. CAR-T cells have exhibited great success in treating hematological malignancies, but their drawbacks include high manufacturing costs and potentially fatal toxicity, such as cytokine release syndrome. To overcome these issues, CAR-NK cells were generated through genetic engineering and demonstrated significant clinical responses and lower adverse effects compared with CAR-T cell therapy. In this review, we summarize recent advances in NK cell immunotherapy, focusing on NK cell biology and function, the types of NK cell therapy, and clinical trials and future perspectives on NK cell therapy.

Journal ArticleDOI
TL;DR: Sun et al. as discussed by the authors highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs, and discussed the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers, as well as their usefulness in detecting cancer resistance to therapeutic agents.
Abstract: Exosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.

Journal ArticleDOI
TL;DR: In this paper , the causal relationship between physical activity (PA) and COVID-19 susceptibility, hospitalization and severity using a Mendelian randomization study was explored. But the causal effects were estimated with inverse variance weighted, MR-Egger, weighted median and MR-PRESSO.
Abstract: The 2019 coronavirus disease pandemic (COVID-19) poses an enormous threat to public health worldwide, and the ensuing management of social isolation has greatly decreased opportunities for physical activity (PA) and increased opportunities for leisure sedentary behaviors (LSB). Given that both PA and LSB have been established as major influencing factors for obesity, diabetes and cardiometabolic syndrome, whether PA/LSB in turn affects the susceptibility to COVID-19 by disrupting metabolic homeostasis remains to be explored. In this study, we aimed to systematically evaluate the causal relationship between PA/LSB and COVID-19 susceptibility, hospitalization and severity using a Mendelian randomization study.Data were obtained from a large-scale PA dataset (N = 377,000), LSB dataset (N = 422,218) and COVID-19 Host Genetics Initiative (N = 2,586,691). The causal effects were estimated with inverse variance weighted, MR-Egger, weighted median and MR-PRESSO. Sensitivity analyses were implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis and the funnel plot. Risk factor analyses were further conducted to investigate the potential mediators.Genetically predicted accelerometer-assessed PA decreased the risk for COVID-19 hospitalization (OR = 0.93, 95% CI 0.88-0.97; P = 0.002), while leisure television watching significantly increased the risk of COVID-19 hospitalization (OR = 1.55, 95% CI 1.29-1.88; P = 4.68 × 10-6) and disease severity (OR = 1.85, 95% CI 1.33-2.56; P = 0.0002) after Bonferroni correction. No causal effects of self-reported moderate to vigorous physical activity (MVPA), accelerometer fraction of accelerations > 425 milligravities, computer use or driving on COVID-19 progression were observed. Risk factor analyses indicated that the above causal associations might be mediated by several metabolic risk factors, including smoking, high body mass index, elevated serum triglyceride levels, insulin resistance and the occurrence of type 2 diabetes.Our findings supported a causal effect of accelerometer-assessed PA on the reduced risk of COVID-19 hospitalization as well as television watching on the increased risk of COVID-19 hospitalization and severity, which was potentially mediated by smoking, obesity and type 2 diabetes-related phenotypes. Particular attention should be given to reducing leisure sedentary behaviors and encouraging proper exercise during isolation and quarantine for COVID-19.

Journal ArticleDOI
TL;DR: In this paper , the role of probiotics and prebiotics in regulating acute airway inflammation and the TLR4/NF-kB pathway was explored in an allergic asthma model of BALB/c mice.
Abstract: Asthma is a common respiratory disease, and immune system dysregulation has direct relevance to asthma pathogenesis. Probiotics and prebiotics have immunomodulatory effects and can regulate immune responses and may attenuate allergic reactions. Therefore, in this study, we explored the role of probiotics and prebiotics in regulating acute airway inflammation and the TLR4/NF-kB pathway. Allergic asthma model of BALB/c mice was produced and treated with probiotics (LA-5, GG, and BB-12) and prebiotics (FOS and GOS). Then AHR, BALF cells count, EPO activity, IL-4, 5, 13, 17, 25, 33, as well as IFN-γ, total and OVA-specific IgE, IgG1, Cys-LT, LTB4, LTC4, and TSLP levels were measured. Also, the GTP/GOT assay was performed and gene expression of Akt, NLR3, NF-kB, PI3K, MyD88, TLR4, CCL11, CCL24, MUC5a, Eotaxin, IL-38, and IL-8 were determined. Finally, lung histopathological features were evaluated. Treatment with probiotics could control AHR, eosinophil infiltration to the BALF and reduce the levels of immunoglobulins, IL-17, GTP and also decrease mucus secretion, goblet cell hyperplasia, peribronchial and perivascular inflammation and also, EPO activity. It could reduce gene expression of TLR4 and CCL11. On the other hand, IL-38 gene expression was increased by both probiotic and prebiotic treatment. Treatment with probiotics and prebiotics could control levels of IL-4, 5, 13, 25, 33, leukotrienes, the gene expression of AKT, NLR3, NF-κB, MyD88, MUC5a. The prebiotic treatment could control peribronchial inflammation and PI3K gene expression. Both of the treatments had no significant effect on the GOT, TSLP and IL-8, eotaxin and CCL24 gene expression. Probiotics and prebiotics could induce tolerance in allegro-inflammatory reactions and alter immune responses in allergic conditions. Probiotics could also modulate cellular and humoral immune responses and prevent allergic disorders.

Journal ArticleDOI
TL;DR: In this paper , the authors summarized and discussed the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation.
Abstract: Central nervous system (CNS) diseases, such as multiple sclerosis, Alzheimer's disease (AD), and Parkinson's disease (PD), affect millions of people around the world. Great efforts were put in disease related research, but few breakthroughs have been made in the diagnostic and therapeutic approaches. Exosomes are cell-derived extracellular vesicles containing diverse biologically active molecules secreted by their cell of origin. These contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred between different cells, tissues, or organs, regulating various intercellular cross-organ communications and normal and pathogenic processes. Considering that cellular environment and cell state strongly impact the content and uptake efficiency of exosomes, their detection in biological fluids and content composition analysis potentially offer a multicomponent diagnostic readout of several human diseases. Recently, studies have found that aberrant secretion and content of exosomes are closely related to the pathogenesis of CNS diseases. Besides, loading natural cargoes, exosomes can deliver drugs cross the blood brain barrier, making them emerging candidates of biomarkers and therapeutics for CNS diseases. In this review, we summarize and discuss the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation. Moreover, we propose the therapeutic strategies of applying exosomes to the diagnosis, early detection, and treatment of CNS diseases.

Journal ArticleDOI
TL;DR: In this article , a Mendelian randomization (MR) study was conducted to evaluate the relationship between genetically increased serum 25OHD levels and reduced MS in the European population.
Abstract: Observational studies and previous Mendelian randomization (MR) studies have shown that genetically low 25-hydroxyvitamin D (25OHD) levels are associated with a high susceptibility to multiple sclerosis (MS). The present MR study aims to update the causal estimates for the effects of 25OHD levels on MS risk.To date, the largest genome-wide association study (GWAS) for serum 25OHD (n = 401,460) and MS (14,498 MS cases and 24,091 controls) was used to assess the effect of serum 25OHD levels on MS. All participants were of European ancestry. The MR-egger_intercept test and Cochran's Q statistic were used to determine the pleiotropy and the heterogeneity, respectively. MR-egger, weighted median, inverse variance weighted (multiplicative random effects), simple mode, and weighted mode methods were used to evaluate the causal association of serum 25OHD levels with MS. Finally, the effect of a single 25OHD SNP (single nucleotide polymorphism) on MS was used to test the SNP bias.One hundred and fifteen newly identified serum 25OHD genetic variants were extracted from a large-scale serum 25OHD GWAS dataset. The 20 most effective and independent 25OHD genetic instrumental variables were extracted from the MS GWAS summary statistics. Pleiotropy analysis suggested no significant pleiotropic variant among the 20 selected 25OHD genetic instrument variants in MS GWAS datasets. As serum levels of 25OHD based on genetic changes increased, the risk of MS decreased using MR-egger (Beta = - 0.940, p = 0.001; OR = 0.391), weighted median (Beta = - 0.835, p = 0.000; OR = 0.434), IVW (Beta = - 0.781, p = 0.000; OR = 0.458), simple mode (Beta = - 1.484, p = 0.016; OR = 0.227), and weighted mode (Beta = - 0.913, p = 0.000; OR = 0.401). Our results were robust, with no obvious bias based on investigating the single 25OHD SNP on MS.Our analysis suggested a causal association between genetically increased serum 25OHD levels and reduced MS in the European population.

Journal ArticleDOI
TL;DR: In this article , the authors summarized and discussed the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation.
Abstract: Central nervous system (CNS) diseases, such as multiple sclerosis, Alzheimer's disease (AD), and Parkinson's disease (PD), affect millions of people around the world. Great efforts were put in disease related research, but few breakthroughs have been made in the diagnostic and therapeutic approaches. Exosomes are cell-derived extracellular vesicles containing diverse biologically active molecules secreted by their cell of origin. These contents, including nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred between different cells, tissues, or organs, regulating various intercellular cross-organ communications and normal and pathogenic processes. Considering that cellular environment and cell state strongly impact the content and uptake efficiency of exosomes, their detection in biological fluids and content composition analysis potentially offer a multicomponent diagnostic readout of several human diseases. Recently, studies have found that aberrant secretion and content of exosomes are closely related to the pathogenesis of CNS diseases. Besides, loading natural cargoes, exosomes can deliver drugs cross the blood brain barrier, making them emerging candidates of biomarkers and therapeutics for CNS diseases. In this review, we summarize and discuss the advanced research progress of exosomes in the pathological processes of several CNS diseases in regarding with neuroinflammation, CNS repair, and pathological protein aggregation. Moreover, we propose the therapeutic strategies of applying exosomes to the diagnosis, early detection, and treatment of CNS diseases.

Journal ArticleDOI
TL;DR: Sun et al. as discussed by the authors highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs, and discussed the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers, as well as their usefulness in detecting cancer resistance to therapeutic agents.
Abstract: Exosomal miRNAs have attracted much attention due to their critical role in regulating genes and the altered expression of miRNAs in virtually all cancers affecting humans (Sun et al. in Mol Cancer 17(1):14, 2018). Exosomal miRNAs modulate processes that interfere with cancer immunity and microenvironment, and are significantly involved in tumor growth, invasion, metastasis, angiogenesis and drug resistance. Fully investigating the detailed mechanism of miRNAs in the occurrence and development of various cancers could help not only in the treatment of cancers but also in the prevention of malignant diseases. The current review highlighted recently published advances regarding cancer-derived exosomes, e.g., sorting and delivery mechanisms for RNAs. Exosomal miRNAs that modulate cancer cell-to-cell communication, impacting tumor growth, angiogenesis, metastasis and multiple biological features, were discussed. Finally, the potential role of exosomal miRNAs as diagnostic and prognostic molecular markers was summarized, as well as their usefulness in detecting cancer resistance to therapeutic agents.

Journal ArticleDOI
TL;DR: In this article , the role of bilirubin in improving atherosclerosis was investigated, and it was shown that bilibrubin can serve as a negative regulator of the development of atherosclerotic plaques in ApoE-deficient mice.
Abstract: Atherosclerosis is a chronic inflammatory disease caused mainly by lipid accumulation and excessive inflammatory immune response. Although the lipid-lowering and cardioprotective properties of bilirubin, as well as the negative relationship between bilirubin and atherosclerosis, were well documented, it is not yet clear whether bilirubin can attenuate atherosclerosis in vivo. In this study, we investigated the role of bilirubin in improving atherosclerosis. We found that mildly elevated bilirubin significantly reduced the risk factors of atherosclerosis, such as plasma glucose, total cholesterol, and low-density lipoprotein cholesterol, and the formation of atherosclerotic plaques, liver total cholesterol, and cholesterol ester concentration in apolipoprotein E-deficient (ApoE-/-) mice fed a western-type (high fat) diet. It was further found that bilirubin could promote the degradation of 3-Hydroxy-3-Methylglutaryl-CoA Reductase (HMGCR), a rate-limiting enzyme for endogenous cholesterol synthesis. Using mass cytometry-based high dimensional single cell analysis, we observed a decrease of natural killer cells and an increase of dendritic cells and myeloid-derived suppressor cells, which all are closely associated with atherosclerosis risk factors and contribute to the improvement of atherosclerosis, in ApoE-/- mice treated with bilirubin. By in-depth analysis, modulation of multiple spleen or peripheral blood T cell clusters exhibiting either positive or negative correlations with total cholesterol or low-density lipoprotein cholesterol was detected after bilirubin treatment. In this study, we demonstrate that bilirubin serves as a negative regulator of atherosclerosis and reduces atherosclerosis by inhibiting cholesterol synthesis and modulating the immune system.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients.
Abstract: Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported.Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC.Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells.In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.

Journal ArticleDOI
TL;DR: In this paper , the authors provide a theoretical basis for exploring the applications of exosomal circRNAs in malignant tumor diagnosis and treatment, and their potential utility in diagnosis and treatments, and possible mechanisms.
Abstract: Exosomes are microvesicles secreted by cells. They contain a variety of bioactive substances with important roles in intercellular communication. Circular RNA (circRNA), a type of nucleic acid molecule found in exosomes, forms a covalently bonded closed loop without 5' caps or 3' poly(A) tails. It is structurally stable, widely distributed, and tissue specific. CircRNAs mainly act as microRNA sponges and have important regulatory roles in gene expression; they are superior to other non-coding RNAs as molecular diagnostic markers and drug treatment targets. Exosomal-derived circRNAs in the body fluids of tumor patients can modulate tumor proliferation, invasion, metastasis, and drug resistance. They can be used as effective biomarkers for early non-invasive diagnosis and prognostic evaluation of tumors, and also represent ideal targets for early precision therapeutic intervention. This review provides a theoretical basis for exploring the applications of exosomal circRNAs in malignant tumor diagnosis and treatment. We describe the biological functions of exosomal circRNAs in the occurrence and development of malignant tumors, their potential utility in diagnosis and treatment, and possible mechanisms.

Journal ArticleDOI
TL;DR: In this paper , the authors summarized the evidence revealing the microbiota's involvement in cancer and its mechanism, and delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Abstract: In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches' therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.

Journal ArticleDOI
TL;DR: In this article , the authors used neutrophil-to-lymphocyte ratio (NLR), lymphocyte to-monocyte ratio(LMR), platelet-tolycky ratio (PLR), and systemic immune-inflammation index (SII) to predict pathological response to anti-PD-1 plus neoadjuvant chemotherapy, and cutoff values of these parameters were all determined by ROC curve analysis.
Abstract: The neutrophil-to-lymphocyte ratio (NLR), lymphocyte-to-monocyte ratio (LMR), platelet-to-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII) have been used to predict therapeutic response in different tumors. However, no assessments of their usefulness have been performed in esophageal squamous cell carcinoma (ESCC) patients receiving anti‑PD‑1 combined with neoadjuvant chemotherapy.The respective data of 64 ESCC patients receiving anti‑PD‑1 combined with neoadjuvant chemotherapy were analyzed. Whether NLR, LMR, PLR, and SII at baseline and post-treatment might predict pathological response to anti‑PD‑1 plus neoadjuvant chemotherapy, and cutoff values of these parameters were all determined by ROC curve analysis.NLR (cutoff = 3.173, AUC = 0.644, 95% CI 0.500-0.788, P = 0.124, sensitivity = 1.000, specificity = 0.373), LMR (cutoff = 1.622, AUC = 0.631, 95% CI 0.477-0.784, P = 0.161, sensitivity = 0.917, specificity = 0.137), PLR (cutoff = 71.108, AUC = 0.712, 95% CI 0.575-0.849, P = 0.023, sensitivity = 1.000, specificity = 0.059), and SII at baseline (cutoff = 559.266, AUC = 0.681, 95% CI 0.533-0.830, P = 0.052, sensitivity = 0.373, specificity = 1.000) seemed to be a useful predictor for distinguishing responders from non-responders. Combining NLR with SII at baseline (AUC = 0.729, 95% CI 0.600-0.858, P = 0.014, sensitivity = 0.917, specificity = 0.510), LMR and SII at baseline (AUC = 0.735, 95% CI 0.609-0.861, P = 0.012, sensitivity = 1.000 specificity = 0.471), PLR and SII at baseline (AUC = 0.716, 95% CI 0.584-0.847, P = 0.021, sensitivity = 1.000 specificity = 0.431), and LMR and PLR at post-treatment in the third period (AUC = 0.761, 95% CI 0.605-0.917, P = 0.010, sensitivity = 0.800, specificity = 0.696) might slightly increase the prediction ability to determine patients who have response or no response. Finally, combining LMR at baseline, SII at post-treatment in the second period with PLR at post-treatment in the third period could be considered a better predictor for discriminating responders and non-responders than single or dual biomarkers (AUC = 0.879, 95% CI 0.788-0.969, P = 0.0001, sensitivity = 0.909, specificity = 0.800).The models we constructed allowed for the accurate and efficient stratification of ESCC patients receiving anti-PD-1 plus chemotherapy and are easily applicable for clinical practice at no additional cost.

Journal ArticleDOI
TL;DR: In this paper , the authors summarized the evidence revealing the microbiota's involvement in cancer and its mechanism, and delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.
Abstract: In recent years, there has been a greater emphasis on the impact of microbial populations inhabiting the gastrointestinal tract on human health and disease. According to the involvement of microbiota in modulating physiological processes (such as immune system development, vitamins synthesis, pathogen displacement, and nutrient uptake), any alteration in its composition and diversity (i.e., dysbiosis) has been linked to a variety of pathologies, including cancer. In this bidirectional relationship, colonization with various bacterial species is correlated with a reduced or elevated risk of certain cancers. Notably, the gut microflora could potentially play a direct or indirect role in tumor initiation and progression by inducing chronic inflammation and producing toxins and metabolites. Therefore, identifying the bacterial species involved and their mechanism of action could be beneficial in preventing the onset of tumors or controlling their advancement. Likewise, the microbial community affects anti-cancer approaches' therapeutic potential and adverse effects (such as immunotherapy and chemotherapy). Hence, their efficiency should be evaluated in the context of the microbiome, underlining the importance of personalized medicine. In this review, we summarized the evidence revealing the microbiota's involvement in cancer and its mechanism. We also delineated how microbiota could predict colon carcinoma development or response to current treatments to improve clinical outcomes.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper investigated the effect of quinone oxidoreductase 1 (NQO1) on renal tubular epithelial cells (HK-2 cells).
Abstract: Diabetic nephropathy (DN) is one of the main complications of diabetes, and oxidative stress plays an important role in its progression. NAD(P)H: quinone oxidoreductase 1 (NQO1) protects cells from oxidative stress and toxic quinone damage. In the present study, we aimed to investigate the protective effects and underlying mechanisms of NQO1 on diabetes-induced renal tubular epithelial cell oxidative stress and apoptosis.In vivo, the kidneys of db/db mice, which are a type 2 diabetes model, were infected with adeno-associated virus to induce NQO1 overexpression. In vitro, human renal tubular epithelial cells (HK-2 cells) were transfected with NQO1 pcDNA3.1(+) and cultured in high glucose (HG). Gene and protein expression was assessed by quantitative real-time PCR, western blotting, immunofluorescence analysis, and immunohistochemical staining. Reactive oxygen species (ROS) were examined by MitoSox red and flow cytometry. TUNEL assays were used to measure apoptosis.In vivo, NQO1 overexpression reduced the urinary albumin/creatinine ratio (UACR) and blood urea nitrogen (BUN) level in db/db mice. Our results revealed that NQO1 overexpression could significantly increase the ratio of NAD+/NADH and silencing information regulator 1 (Sirt1) expression and block tubular oxidative stress and apoptosis in diabetic kidneys. In vitro, NQO1 overexpression reduced the generation of ROS, NADPH oxidase 1 (Nox1) and Nox4, the Bax/Bcl-2 ratio and the expression of Cleaved Caspase-3 and increased NAD+/NADH levels and Sirt1 expression in HK-2 cells under HG conditions. However, these effects were reversed by the Sirt1 inhibitor EX527.All these data suggest that NQO1 has a protective effect against oxidative stress and apoptosis in DN, which may be mediated by the regulation of Sirt1 through increasing intracellular NAD+/NADH levels. Therefore, NQO1 may be a new therapeutic target for DN.

Journal ArticleDOI
TL;DR: In this article , the authors reviewed the history and biogenesis of exosomes and discussed non-coding RNAs and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method.
Abstract: Clinical oncologists need more reliable and non-invasive diagnostic and prognostic biomarkers to follow-up cancer patients. However, the existing biomarkers are often invasive and costly, emphasizing the need for the development of biomarkers to provide convenient and precise detection. Extracellular vesicles especially exosomes have recently been the focus of translational research to develop non-invasive and reliable biomarkers for several diseases such as cancers, suggesting as a valuable source of tumor markers. Exosomes are nano-sized extracellular vesicles secreted by various living cells that can be found in all body fluids including serum, urine, saliva, cerebrospinal fluid, and ascites. Different molecular and genetic contents of their origin such as nucleic acids, proteins, lipids, and glycans in a stable form make exosomes a promising approach for various cancers' diagnoses, prediction, and follow-up in a minimally invasive manner. Since exosomes are used by cancer cells for intercellular communication, they play a critical role in the disease process, highlighting the importance of their use as clinically relevant biomarkers. However, regardless of the advantages that exosome-based diagnostics have, they suffer from problems regarding their isolation, detection, and characterization of their contents. This study reviews the history and biogenesis of exosomes and discusses non-coding RNAs (ncRNAs) and their potential as tumor markers in different types of cancer, with a focus on next generation sequencing (NGS) as a detection method. Moreover, the advantages and challenges associated with exosome-based diagnostics are also presented.

Journal ArticleDOI
TL;DR: In this paper , the safety of very low-calorie ketogenic diet (VLCKD) in subjects with obesity was investigated and it was shown that side effects are mild, transient and can be prevented and managed by adhering to the appropriate indications and contraindications for VLCKd, following well-organized and standardized protocols and performing adequate clinical and laboratory monitoring.
Abstract: Very Low-Calorie Ketogenic Diet (VLCKD) is currently a promising approach for the treatment of obesity. However, little is known about the side effects since most of the studies reporting them were carried out in normal weight subjects following Ketogenic Diet for other purposes than obesity. Thus, the aims of the study were: (1) to investigate the safety of VLCKD in subjects with obesity; (2) if VLCKD-related side effects could have an impact on its efficacy.In this prospective study we consecutively enrolled 106 subjects with obesity (12 males and 94 females, BMI 34.98 ± 5.43 kg/m2) that underwent to VLCKD. In all subjects we recorded side effects at the end of ketogenic phase and assessed anthropometric parameters at the baseline and at the end of ketogenic phase. In a subgroup of 25 subjects, we also assessed biochemical parameters.No serious side effects occurred in our population and those that did occur were clinically mild and did not lead to discontinuation of the dietary protocol as they could be easily managed by healthcare professionals or often resolved spontaneously. Nine (8.5%) subjects stopped VLCKD before the end of the protocol for the following reasons: 2 (1.9%) due to palatability and 7 (6.1%) due to excessive costs. Finally, there were no differences in terms of weight loss percentage (13.5 ± 10.9% vs 18.2 ± 8.9%; p = 0.318) in subjects that developed side effects and subjects that did not developed side effects.Our study demonstrated that VLCKD is a promising, safe and effective therapeutic tool for people with obesity. Despite common misgivings, side effects are mild, transient and can be prevented and managed by adhering to the appropriate indications and contraindications for VLCKD, following well-organized and standardized protocols and performing adequate clinical and laboratory monitoring.